Skip to main content

Fungal delignification and biomechanical pulping of wood

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 57))

Abstract

This review article summarizes the results on microstructural changes and delignificantion, lignin-degrading enzyme systems, and biopulping of wood with lignin-degrading fungi. Biopulping, defined as the treatment of wood chips with lignin-degrading fungi prior to pulping, saves substantial amount of electrical energy during mechanical pulping, results in stronger paper, and lowers the environmental impact of pulping. Optical properties are diminished; however, brightness can be restored readily with peroxide bleaching. The economics of the process look attractive if the process can be performed in a chip-pile based system. Past work on biopulping had been minimal, however a comprehensive evaluation of biopulping at the Forest Products Laboratory suggests that biopulping has a good chance of commercial success.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cowling EB (1961) US Dept Agric Tech Bull 1258

    Google Scholar 

  2. Wilcox WW (1968) Changes in wood microstructure through progressive stages of decay. US For Serv Res Pap FPL-70

    Google Scholar 

  3. Kirk TK, Cowling EB (1984) Biological decomposition of wood. In: Rowell RM (ed) The chemistry of solid wood. Adv Chem Series 207. American Chemical Society, Washington DC, pp 455–487

    Google Scholar 

  4. Eriksson KE, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  5. Kirk TK (1975) Holzforschung 29:99

    CAS  Google Scholar 

  6. Blanchette RA, Nilsson T, Daniel G, Abad A (1990) Biological degradation of wood. In: Rowell RM, Barbour RJ (eds) Archaeological wood: properties, chemistry and preservation, Adv Chem Ser 225. Am Chem Soc, Washington, DC, p. 141

    Google Scholar 

  7. Goni MA, Nelson B, Blanchette RA, Hedges JI (1993) Geochim. Cosmochim. Acta 57:3985

    Article  CAS  Google Scholar 

  8. Savory JG (1954) Ann Appl Biol 41:336

    Article  Google Scholar 

  9. Daniel G, Nilsson T (1988) Int Biodeterior 24:327

    Article  CAS  Google Scholar 

  10. Daniel G, Nilsson T (1989) Inst Wood Sci 11:162

    Google Scholar 

  11. Blanchette RA, Simpson E (1992) IAWA Bull 13:201

    Google Scholar 

  12. Eaton RA, Hale MDC (1993) Wood: decay, pests and protection. Chapman and Hall, London

    Google Scholar 

  13. Nilsson T, Daniel G, Kirk TK, Obst JR. (1989) Holzforschung 43:11

    CAS  Google Scholar 

  14. Blanchette RA (1991) Annu Rev Phytopathol 29:381

    Article  CAS  Google Scholar 

  15. Otjen L, Blanchette RA, Effland M, Leatham GF (1987) Holzforschung 41:343

    CAS  Google Scholar 

  16. Blanchette RA, Burnes TA, Eerdmans ME, Akhtar M (1992) Holzforschung 46:109

    CAS  Google Scholar 

  17. Blanchette RA, Otjen L, Carlson MC (1987) Phytopathology 77:684

    CAS  Google Scholar 

  18. Otjen L, Blanchette RA, Leatham GF (1988) Holzforschung 42:281

    CAS  Google Scholar 

  19. Highley TL (1982) Can J For Res 12:435

    Article  CAS  Google Scholar 

  20. Faix O, Mozuch MD, Kirk TK (1985) Holzforschung 39:203

    Article  CAS  Google Scholar 

  21. Agosin E, Blanchette RA, Silva H, Lapierre C, Cease KR, Ibach RE, Abad AR, Muga P (1990) Appl Environ Microbiol 56:65

    CAS  Google Scholar 

  22. Liese W (1970) Annu Rev Phytopathol 8:231

    Article  Google Scholar 

  23. Yoshizawa N, watanabe J, Kobayashi S, Idei T (1989) Bull Utsunomiya Univ For 25:23–28

    Google Scholar 

  24. Srebotnik E, Messner K (1994) Appl Environ Microbiol 60:1383

    Google Scholar 

  25. Blanchette RA, Abad AR, Cease KR, Lovrien RE, Leathers TD (1989) Appl Environ Microbiol 55:2293

    CAS  Google Scholar 

  26. Blanchette RA, Abad AR, Farrell RL, Leathers TD (1989) Appl Environ Microbiol 55:1457

    CAS  Google Scholar 

  27. Ander P, Eriksson K-E (1977) Physiol Plant 41:239

    Article  CAS  Google Scholar 

  28. Buswell JA, Odier E (1987) Crit Rev Biotechnol 6:1

    CAS  Google Scholar 

  29. Kirk TK, Farrell RL (1987) Annu Rev Microbiol 117:277

    Google Scholar 

  30. Tien M (1987) Properties of ligninase from Phanerochaete chrysosporium and their possible applications Critical Reviews Journals in Microbiology 15(2):141–168, CRC Press, Boca Raton, FL

    Article  CAS  Google Scholar 

  31. Gold MH, Alic M (1993) Microbiological Reviews 57:605

    CAS  Google Scholar 

  32. Hatakka A (1994) FEMS Microbiology Reviews 13:125

    Article  CAS  Google Scholar 

  33. Srinivasan C, D'Souza TM, Boominathan K, Reddy CA (1995) Appl Environ Microbiol 61:4274

    CAS  Google Scholar 

  34. Rieble S, Joshi D, Gold MH (1994) J Bacteriol 176:4838

    CAS  Google Scholar 

  35. Hammel KE, Jensen KA Jr, Mozuch MD, Landucci L, Tien M, Pease EA (1993) J Biol Chem 268:12274

    CAS  Google Scholar 

  36. Koduri RS, Tien M (1994) Biochemistry 33:4225

    Article  CAS  Google Scholar 

  37. Ruttimann C, Schwember E, Salas L, Cullen D, Vicuna R (1992) Biotechnol Appl Biochem 16:64

    CAS  Google Scholar 

  38. Popp JL, Kalyanaraman B, Kirk TK (1990) Biochemistry 29:10475

    Article  CAS  Google Scholar 

  39. Higuchi T (1993) J Biotechnol 30:1

    Article  CAS  Google Scholar 

  40. Wariishi H, Valli K, Gold MH (1991) Biochem Biophys Res Commun 176:269

    Article  CAS  Google Scholar 

  41. Bao W, Fukushima Y, Jensen Jr. KA, Moen MA, Hammel KE (1994) FEBS Lett 354:297

    Article  CAS  Google Scholar 

  42. Call HP, Mucke I (1994) State of the art of enzyme bleaching and disclosure of a breakthrough process. Paper presented at the 1994 International Nonchlorine Bleaching Conference, Amelia Island, FL

    Google Scholar 

  43. Cullen D, Kersten P (1992) Fungal enzymes for lignocellulosic degradation. In: Kinghorn JR, Turner G (eds) Applied molecular genetics of filamentous fungi. Blackie, Glasgow, UK, p 100

    Google Scholar 

  44. Edwards SL, Raag R, Wariishi H, Gold MH, Poulos TL (1993) Proc Natl Acad Sci USA 90:750

    Article  CAS  Google Scholar 

  45. Pointek K, Alumoff P, Winterhalter K (1993) FEBS Lett 315:119

    Article  Google Scholar 

  46. Sundaramoorthy M, Kishi K, Gold MH, Poulos TL (1994) J Biol Chem 269:32759

    CAS  Google Scholar 

  47. Daniel G, Nilsson T, Petterson B (1989) Appl Environ Microbiol 55:871

    CAS  Google Scholar 

  48. Daniel G, Petterson P, Nilsson T, Volc J (1990) Can J Bot 68:920

    Article  CAS  Google Scholar 

  49. Daniel G, Jellison J, Goodell B, Paszczynski A Crawford R (1991) Appl Microbiol Biotechnol 35:674

    Article  CAS  Google Scholar 

  50. Srebotnik E, Messner K, Foisner R (1988) Appl Environ Microbiol 54:2608

    CAS  Google Scholar 

  51. Slatin B (ed) (1992) 1992 Statistics of paper, paperboard and wood pulp, American Paper Institute, New York

    Google Scholar 

  52. Kirk TK, Koning JW Jr, Burgess RR, Akhtar M, Blanchette RA, Cameron DC, Cullen D, Kersten PJ, Lightfoot EN, Myers GC, Sykes M, Wall MB (1993) Biopulping: A glimpse of the future? Res Rep FPL-RP-523, Madison, WI

    Google Scholar 

  53. Kirk TK, Akhtar M, Blanchette RA (1994) Biopulping: Seven years of consortia research. Tappi Biological Sciences Symposium, pp. 57–66, Tappi Press, Atlanta, GA

    Google Scholar 

  54. Lawson LR, Still CN (1957) Tappi J 40:56A

    CAS  Google Scholar 

  55. Ander P, Eriksson K-E (1975) Svensk Papperstidning 18:641

    Google Scholar 

  56. Eriksson K-E, Ander P, Henningsson B, Nilsson T, Goodell B (1976) Method for Producing Cellulose Pulp. US Patent 3 962 033

    Google Scholar 

  57. Johnsrud SC, Eriksson K-E (1985) Appl Microbiol Biotechnol 21:320

    Article  CAS  Google Scholar 

  58. Eriksson K-E, Johnsrud SC, Vallander L (1983) Arch Microbiol 135–161

    Google Scholar 

  59. Eriksson K-E. (1990) Wood Sci Technol 24:79

    Article  CAS  Google Scholar 

  60. Samuelsson L, Mjober PJ, Hartler N, Vallander L, Eriksson K-E (1980) Svensk Papperstidning 8:221

    Google Scholar 

  61. Johnsrud SC, Fernandez N, Lopez P, Guitierrez I, Saez A, Eriksson K-E (1987) Nordic Pulp & Paper Research Journal, Special Issue 2:47

    Google Scholar 

  62. Eriksson K-E, Grunewald A, Vallander L (1980) Biotechnol Bioeng 22:363

    Article  CAS  Google Scholar 

  63. Bar-Lev SS, Kirk TK, Chang H-M (1982) Tappi J 65:111

    CAS  Google Scholar 

  64. Akamatsu I, Yoshihara K, Kamishima H, Fujii T (1984) Mokuzai Gakkaishi 30:697

    CAS  Google Scholar 

  65. Eriksson K-E, Kirk TK (1985) Biopulping, biobleaching and treatment of kraft bleaching effluents with white-rot fungi. In: Cooney CL, Humphery AE (eds) The Principles of Biotechnology: Engineering Considerations. In: Moo-Young M (ed). Comprehensive Biothechnology: The Principles, Applications and Regulation of Biotechnology in Industry, Agricultural and Medicine, Pergamon, New York, p 271

    Google Scholar 

  66. Kirk TK, Burgess RR, Koning JW Jr (1992) Use of fungi in pulping wood: An overview of biopulping research. In: Leatham GF (ed) Frontiers in industrial mycology. Proceedings of Industrial Mycology Symposium, June 25–26, 1990, Madison, WI. Routledge, Chapman and Hall, New York, Chapter 7, p 99

    Google Scholar 

  67. Setliff ED, Eudy WW (1980) Screening white-rot fungi for their capacity to delignify wood. In: Kirk TK, Chang H-M, Higuchi T (eds) Lignin biodegradation: microbiology, chemistry, and protein applications (vol 1). CRC, Boca Raton, FL, p 135

    Google Scholar 

  68. Blanchette RA (1984) Appl Environ Microbiol 56:210

    Google Scholar 

  69. Nashida T (1989) Mokuzai Gakkaishi 35:675

    Google Scholar 

  70. Kimura Y, Asada Y, Kuwahara M (1990) Appl Microbiol Biotechnol 32:436–442

    Article  CAS  Google Scholar 

  71. Blanchette RA, Burnes TA, Leatham GF, Effland MJ (1988) Biomass 15:93

    Article  CAS  Google Scholar 

  72. Leatham GF, Myers GC, Wegner TH, Blanchette RA (1990) Energy savings in biomechanical pulping. In: Kirk TK, Chang H-M (eds) Biotechnology in pulp and paper manufacture —Applications and fundamental investigations, Butterworths-Heinemann, Boston, p 17

    Google Scholar 

  73. Leatham GF, Myers GC, Wegner TH, Blanchette RA (1990) Tappi J. 72:249

    Google Scholar 

  74. Eriksson K-E, Vallander L (1982) Svensk Papperstid. 85:R33

    CAS  Google Scholar 

  75. Leatham GF, Myers GC (1990) Tappi J 72:192

    Google Scholar 

  76. Akhtar M, Leatham GF, Myers GC, Attridge MC (1989) PFI milling: A possible method to assess both energy savings and paper strength properties in biomechanical pulping. Conf Abs Fourth International Conference on Biotechnology in the Pulp and Paper Industry, Raleigh, NC

    Google Scholar 

  77. Simons FL (1950) Tappi J 33:312

    CAS  Google Scholar 

  78. Wurz O (1969) The Paper Maker 38:59

    Google Scholar 

  79. Sachs IB, Leatham GF, Myers GC, Wegner TH (1990) Tappi J 73:249

    CAS  Google Scholar 

  80. Blanchetter RA, Akhtar M, Attridge MC (1992) Tappi J 75:121

    Google Scholar 

  81. Akhtar M, Blanchette RA, Burnes T (1995) Wood Fiber Sci 27:258

    CAS  Google Scholar 

  82. Myers GC, Leatham GF, Wegner TH, Blanchette RA (1988) Tappi J 73:105

    Google Scholar 

  83. Akhtar M, Attridge MC, Myers GC, Kirk TK, Blanchette BA (1992) Tappi J 75:105

    CAS  Google Scholar 

  84. Akhtar M, Attridge MC, Blanchette RA, Myers GC, Wall MB, Sykes MS, Koning Jr JW, Burgess RR, Wegner TH, Kirk TK (1992) The white-rot fungus Ceriporiopsis subvermispora saves electrical energy and improves strength properties during biomechanical pulping of wood. In: Kuwahara M, Shimada M (eds) Biotechnology in pulp and paper industry, UNI Publishers, Kyoto, Japan, p 3

    Google Scholar 

  85. Leatham GF (1983) Mycologia 75:905

    Google Scholar 

  86. Akhtar M, Attridge MC, Myers GC, Blanchette RA (1993) Holzforschung 47:36

    CAS  Google Scholar 

  87. Akhtar M (1994) Holzforschung 48:199

    CAS  Google Scholar 

  88. Leatham GF, Myers GC, Wegner TH (1990) Tappi J 73:197

    CAS  Google Scholar 

  89. Blanchette RA, Leatham GF, Attridge MC, Akhtar M, Myers GC (1991) Biomechanical pulping with C. subvermispora. US Patent no. 5 055 159

    Google Scholar 

  90. Sykes MS (1993) Tappi J 76:121

    CAS  Google Scholar 

  91. Sykes M (1994) Tappi J 77:160

    CAS  Google Scholar 

  92. McGill R, Tukey JW, Larsen WA (1978) The American Statistician 32:12

    Article  Google Scholar 

  93. Sachs IB, Leatham GF, Myers GC (1989) Wood Fiber Sci 21:331

    CAS  Google Scholar 

  94. Sachs IB, Leatham GF, Myers GC, Wegner TH (1990) Biomechanical pulping of aspen chips: Fungal growth pattern and effects on cell wall, fiber, and pulp morphology. In: Kirk TK, Chang H-M (eds) Biotechnology in pulp and paper Manufacture-Applications and fundamental investigations. Butterworths-Heinemann, Boston, p 27

    Google Scholar 

  95. Wall MB (1993) Biopulping process design and analysis, PhD Thesis, University of Wisconsin Chemical Engineering Department

    Google Scholar 

  96. Wall MB, Cameron DC, Lightfoot EN (1993) Biotechnology Advances 11:645

    Article  CAS  Google Scholar 

  97. Harpole GB, Leatham GF, Myers GC (1989) Economic assessment of biomechanical pulping. In: Proceedings of the international mechanical pulping conference 1989-Mechanical pulp responding to end product demands (vol 2). Multiprint, Helsinki, p 398

    Google Scholar 

  98. Akhtar M, Kirk TK, Blanchette RA (1996). Biopulping: An overview of consortia research. In: Srebotnik E, Messner K (eds) Biotechnology in the pulp and paper industry: Recent advances in applied and fundamental research, Facultas-Universitätsverlag, Berggasse 5, A-1090 Wien, Austria, p 187

    Google Scholar 

  99. Akhtar M, Lentz MJ, Blanchette RA, Kirk TK. Corn steep liquor lowers the amount of inoculum for biopulping. Tappi J 1997, Vol 80, Nov 2

    Google Scholar 

  100. Blanchette RA, Farrell RA, Burnes TA, Wendler PA, Zimmerman W, Brush TS, Snyder RA (1992) Tappi J 75:102

    CAS  Google Scholar 

  101. Brush TS, Farrell RL, Ho C (1994) Tappi J 77:155

    CAS  Google Scholar 

  102. Farrell RA, Blanchette RA, Brush TH, Gysin B, Hader Y, Perollaz J-J, Wendler PA, Zimmermann W (1992) Cartapip: A biopulping product for control of pitch and resin acid problems in pulp mills. In: Kuwahara M, Shimada M (eds), Biotechnology in pulp and paper industry. UNI, Kyoto, Japan, p 163

    Google Scholar 

  103. Blanchette RA, Behrendt CJ, Farrell RL (1994) Biological protection of sapstain for the forest products industry. Tappi Biological Sciences Symposium, Tappi, Atlanta, GA, pp. 77–80

    Google Scholar 

  104. Behrendt CJ, Blanchette RA, Farrell RL (1995) Phytopathology 85:92

    Google Scholar 

  105. Wall MB, Brecker J, Fritz A, Iverson S, Noel Y (1994) Cartapip treatment of wood chips to improve chemical pulping efficiency. Tappi Biological Sciences Symposium, Tappi, Atlanta, GA, pp 67–76

    Google Scholar 

  106. Fischer K, Akhtar M, Blanchette RA, Burnes TA, Messner M, Kirk TK (1994) Holzforschung 48:285

    Article  CAS  Google Scholar 

  107. Myers GC, Akhtar M, Lentz M, Scott GM, Sykes MS (1996) Biological pretreatment for thermomechanical (TMP) and chemithermomechanical (CTMP) pulping processes. Conf Abs 211th American Chemical Society National Meeting, New Orleans, LA

    Google Scholar 

  108. Messner K, Srebotnik E (1994) FEMS Microbiology Reviews 13:351

    Article  CAS  Google Scholar 

  109. Scott GM, Akhtar M, Lentz M, Sykes M, Abubakr S (1995) Environmental aspects of biosulfite pulping. Tappi Environmental Conference (Book 2). Tappi Press, Atlanta, GA, p 1155

    Google Scholar 

  110. Oriaran TP, Labosky P Jr, Blankenhorn PR (1990) Tappi J 73:147

    CAS  Google Scholar 

  111. Oriaran TP, Labosky P Jr, Blankenhorn PR (1991) Wood Fiber Sci 23:316

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

K. -E. L. Eriksson (Volume Editor)W. Babel H. W. Blanch Ch. L. Cooney S. -O. Enfors K. -E. L. Eriksson A. Fiechter A. M. Klibanov B. Mattiasson S. B. Primrose H. J. Rehm P. L. Rogers H. Sahm K. Schügerl G. T. Tsao K. Venkat J. Villadsen U. von Stockar C. Wandrey

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag 0241 0250 V 2

About this chapter

Cite this chapter

Akhtar, M., Blanchette, R.A., Kent Kirk, T. (1997). Fungal delignification and biomechanical pulping of wood. In: Eriksson, K.E.L., et al. Biotechnology in the Pulp and Paper Industry. Advances in Biochemical Engineering/Biotechnology, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0102074

Download citation

  • DOI: https://doi.org/10.1007/BFb0102074

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61868-3

  • Online ISBN: 978-3-540-70702-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics