Skip to main content

Fabrication and optical spectroscopy of ultra small III–V compound semiconductor structures

  • Chapter
  • First Online:
Festkörperprobleme 28

Part of the book series: Advances in Solid State Physics ((ASSP,volume 28))

Abstract

The paper discusses the fundamental technological processes for the fabrication of one- and zero-dimensional III–V compound semiconductor structures which are developed for optical spectroscopy. Using high-resolution electron beam lithography, two different approaches to the fabrication of quantum wires and dots have been taken: By electron beam lithography and dry etching of quantum well layers lateral confinement of the electron hole pairs can be obtained. Optical investigations of excitonic transitions in these structures, however, show that the properties are largely determined by surface effects. By the combination of implantation induced interdiffusion of quantum wells with high resolution electron-beam lithography on the other hand we define buried quantum wires and dots. Optical spectra from these structures show pronounced energetic shifts which can be traced to changes of the quantum well composition and to lateral quantization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Esaki and R. Tsu, IBM Research Note RC-2418 (1969); L. Esaki and R. Tsu, IBM J. Res. Develop. 14, 61 (1970)

    Google Scholar 

  2. R. Dingle, Festkörperprobleme/Advances in Solid State Physics, Vol. XV, ed. by H. J. Queisser (Vieweg, Braunschweig 1975), p. 21

    Google Scholar 

  3. J. C. Maan, G. Belle, A. Fasolino, M. Altarelli, and K. Ploog, Phys. Rev. B30, 2253 (1984)

    Article  ADS  Google Scholar 

  4. R. C. Miller and D. A. Kleinmann, J. Lumin. 30, 520 (1985)

    Article  Google Scholar 

  5. J. Feldmann, G. Peter, E. O. Göbel, P. Dawson, K. Moore, C. Foxon, and R. Elliot, Phys. Rev. Lett. 59, 2337 (1987)

    Article  ADS  Google Scholar 

  6. G. Tränkle, H. Leier, A. Forchel, C. Ell, H. Haug, and G. Weimann, Phys. Rev. Lett. 58, 419 (1987)

    Article  ADS  Google Scholar 

  7. Y. Arakawa and A. Yariv, IEEE QE 22, 1887 (1986)

    Article  Google Scholar 

  8. M. D. Camras, N. Holonyak, Jr., K. Hess, R. D. Burnham, and D. R. Scifres, Appl. Phys. Lett. 41, 317 (1982)

    Article  ADS  Google Scholar 

  9. N. T. Linh, Festkörperprobleme/Advances in Solid State Physics, Vol. XXIII, ed. by P. Grosse (Vieweg, Braunschweig 1983), p. 227

    Google Scholar 

  10. M. Abe, T. Minura, K. Nishiuchi, A. Shibatomi, and M. Kobayashi, IEEE QE 22, 1870 (1986)

    Article  Google Scholar 

  11. Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982)

    Article  ADS  Google Scholar 

  12. P. M. Petroff, A. C. Gossard, R. A. Logan, and W. Wiegmann, Appl. Phys. Lett. 41, 635 (1982)

    Article  ADS  Google Scholar 

  13. J. Cibert, P. M. Petroff, G. J. Dolan, S. J. Pearton, A. C. Gossard, and J. H. English, Appl. Phys. Lett. 49, 1275 (1986)

    Article  ADS  Google Scholar 

  14. H. Temkin, G. J. Dolan, M. B. Panish, and S. N. G. Chu, Appl. Phys. Lett. 50, 413 (1987)

    Article  ADS  Google Scholar 

  15. B. E. Maile, A. Forchel, R. Germann A. Menschig, K. Streubel, F. Scholz, G. Weimann, and W. Schlapp, Microelectronic Engineering 6, 163 (1987)

    Article  Google Scholar 

  16. R. E. Howard, L. D. Jackel, and W. J. Skocpol, Microelectronic Engineering 3, 3 (1985)

    Article  Google Scholar 

  17. M. Isaacson and A. Muray, J. Vac. Sci. Technol. 19, 1117 (1981)

    Article  ADS  Google Scholar 

  18. F. Emoto, K. Gamo, S. Namba, N. Samato, and R. Shimizu, Jap. J. Appl. Phys. 24, L809 (1985)

    Article  ADS  Google Scholar 

  19. M. Komuro, H. Hiroshima, H. Tanoue, and T. Kanayama, J. Vac. Sci. Technol. B4, 985 (1983)

    Article  Google Scholar 

  20. Y. Hirayama, Y. Suzuki, H. Okamoto, and S. Tarucha, Jap. J. Appl. Phys. 24, L516 (1985)

    Article  ADS  Google Scholar 

  21. S. Namba, Microelectronic Engineering 6, 315 (1987)

    Article  Google Scholar 

  22. A. C. Warren, I. Plotnik, E. H. Anderson, M. L. Schattenburg, D. A. Antoniadis, and H. I. Smith, J. Vac. Sci. Technol. B4, 365 (1986)

    Article  Google Scholar 

  23. Electron-beam technology in microfabrication, ed. by R. Brewer (Academic Press, New York, 1980)

    Google Scholar 

  24. L. D. Jackel, R. E. Howard, P. M. Mankiewiech, H. G. Craighead, and R. W. Epworth, Appl. Phys. Lett. 45, 698 (1984)

    Article  ADS  Google Scholar 

  25. D. F. Kyser, J. Vac. Sci. Technol., B1, 1391 (1983).

    Google Scholar 

  26. J. S. Greeneich, J. Electrochem. Soc. 122, 970 (1975)

    Article  Google Scholar 

  27. R. E. Howard and D. E. Prober, in “VLSI Electronics-Microstructure Science”, Vol. 5, p. 146, ed. by N. G. Einspruch (Academic Press 1982)

    Google Scholar 

  28. B. E. Maile, A. Forchel, A. Menschig, R. Germann, and H. P. Meier, to be published

    Google Scholar 

  29. S. Thomas, C. D. W. Wilkinson, S. P. Beaumont, J. Frost, and C. R. Stanley, Microelectronic Engineering 5, 249 (1986)

    Article  Google Scholar 

  30. A. R. Reinberg, in: VLSI Electronics—Microstructure Science, Vol. 2 (Academic Press, New York 1981)

    Google Scholar 

  31. M. B. Stern, H. G. Craighead, P. F. Liao, and P. M. Mankiewich, Appl. Phys. Lett. 45, 410 (1984)

    Article  ADS  Google Scholar 

  32. H. C. Casey and E. Buehler, Appl. Phys. Lett. 30, 247 (1977)

    Article  ADS  Google Scholar 

  33. C. van Opdorp, C. Werkhoven, and A. T. Vink, Appl. Phys. Lett. 30, 40 (1977)

    Article  ADS  Google Scholar 

  34. H. Hillmer, S. Hansmann, A. Forchel, M. Morohashi, E. Lopez, H. P. Meier, and K. Ploog, to be published

    Google Scholar 

  35. K. K. Choi, D. C. Tsui, and K. Alavi, Appl. Phys. Lett. 50, 110 (1987)

    Article  ADS  Google Scholar 

  36. J. Bellessa, F. Carcenac, A. Izrael, H. Launois, and D. Mailly, Microelectronic Engineering 6, 175 (1987)

    Article  Google Scholar 

  37. The value for the surface recombination velocity in InGaAs can be estimated from [14] in conjunction with [32] H. C. Casey and E. Buehler, Appl. Phys. Let. 30, 247 (1977)

    Article  ADS  Google Scholar 

  38. Y. Miyamoto, M. Cao, Y. Shingai, K. Furuya, Y. Suematsu, K. G. Revikumar, and S. Arai, Jap. J. Appl. Phys. 26, L225 (1987)

    Article  ADS  Google Scholar 

  39. H. Leier, H. Rothfritz, and A. Forchel, to be published

    Google Scholar 

  40. W. D. Laidig, N. Holonyak, M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, Appl. Phys. Lett. 38, 776 (1981)

    Article  ADS  Google Scholar 

  41. J. J. Coleman, P. D. Dapkus, C. G. Krikpatrick, M. D. Camras, and N. Holonyak Appl. Phys. Lett. 40, 904 (1982)

    Article  ADS  Google Scholar 

  42. H. Nakashima, S. Semura, T. Ohta, Y. Uchida, H. Saito, T. Fukuzawa, T. Kuroda, and K. L. I. Kobayashi, IEEE QE 21, 629 (1985)

    Article  Google Scholar 

  43. D. G. Deppe, G. S. Jackson, N. Holonyak, D. C. Hall, R. D. Burnham, R. L. Thornton, J. E. Epler, and T. L. Paoli, Appl. Phys. Lett. 50, 329 (1987)

    Article  Google Scholar 

  44. J. F. Ziegler, J. P. Biersack, and U. Littmark, The stopping and range of ions in solids, ed. by J. F. Ziegler, Vol. 1 (Pergamon Press, London 1985)

    Google Scholar 

  45. T. Venkatesan, S. A. Schwarz, D. M. Hwang, R. Bhat, H. W. Yonn, P. Mei, Y. Arakawa, and A. Yariv, Appl. Phys. Lett. 49, 701 (1986).

    Article  ADS  Google Scholar 

  46. Y. Hirayama, Y. Suzuki, and H. Okamoto, Jap. J. Appl. Phys. 24, 1498 (1985)

    Article  ADS  Google Scholar 

  47. J. Cibert, P. M. Petroff, D. J. Werder, S. J. Pearton, A. C. Gossard, and J. H. English, Appl. Phys. Lett. 49, 223 (1986)

    Article  ADS  Google Scholar 

  48. Y. Hirayama, S. Tarucha, Y. Suzuki, and H. Okamoto, Phys. Rev. B37, 2774 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

U. Rössler

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Forchel, A., Leier, H., Maile, B.E., Germann, R. (1988). Fabrication and optical spectroscopy of ultra small III–V compound semiconductor structures. In: Rössler, U. (eds) Festkörperprobleme 28. Advances in Solid State Physics, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107850

Download citation

  • DOI: https://doi.org/10.1007/BFb0107850

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08034-1

  • Online ISBN: 978-3-540-75352-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics