Skip to main content

Atmospheric dynamics and the numerical simulation of atmospheric circulation

  • General Lectures
  • Conference paper
  • First Online:
Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics

Part of the book series: Lecture Notes in Physics ((LNP,volume 18))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ARAKAWA, A., Computational Design for Long-Term Numerical Integration of the Equations of Fluid Motion. J. Computational Physics. 1, 119–143 (1966).

    Article  MATH  ADS  Google Scholar 

  • BAER, F., and ALYEA, F.N., Effects of Spectral Truncation on General Circulation Long-Range Prediction. J. Atm. Sciences. 28, 547–480 (1971).

    Google Scholar 

  • BRYAN, K., and COX, M.D., A numerical investigation of the oceanic general circulation. Tellus. 19, 54–80 (1967).

    Article  ADS  Google Scholar 

  • BRYAN, K., A numerical method for the study of the circulation of the world ocean. J. Computational Physics. 4, 347–376 (1969).

    Article  MATH  ADS  Google Scholar 

  • CHARNEY, J.G., Geostrophic Turbulence. J. Atm. Sciences. 28, 1087–1095 (1971).

    Article  ADS  Google Scholar 

  • CROWLEY, W.P., A Global Numerical Ocean Model. J. Computational Physics. 3, 111–147 (1968).

    Article  MATH  ADS  Google Scholar 

  • DEARDORFF, J. W., A Three-dimensional numerical investigation of the idealized planetary boundary layer. Geophys. Fluid Dynamics. 1, 377–410 (1970) a.

    Article  ADS  Google Scholar 

  • DEARDORFF, J.W., A numerical study of three-dimensional turbulent channel flow at large Reynolds number. J. Fluid Mech. 41, 453–480 (1970) b.

    Article  MATH  ADS  Google Scholar 

  • ELLSAESSER, H.N., Evaluation of Spectral Versus Grid Methods of Hemispheric Numerical Weather Prediction. J. Applied Met. 5, 246–262 (1966).

    Article  ADS  Google Scholar 

  • FISCHER, G., A survey of Finite-Difference Approximation to the Primitive Equations. Monthly Weather Rev. 93, 1–10 (1965).

    Article  ADS  Google Scholar 

  • FOX, D., and LILLY, D., Numerical Simulation of turbulent flows. Reviews of Geophysics. 10, 51–72 (1972).

    Article  ADS  Google Scholar 

  • HOLLAND, W.R., On the wind driven circulation in an ocean with bottom topography. Tellus. 19, 580–600 (1967).

    Article  ADS  Google Scholar 

  • JULIAN, WASHINGTON, HEMBREE and RIDLEY, On the spectral distribution of large scale atmospheric kinetic energy. J. Atm. Sciences. 27, 376–387 (1970).

    Article  ADS  Google Scholar 

  • KAO, and WENDELL, The kinetic energy of the large scale atmospheric motion in wavelength-frequency space. J. Atm. Sciences. 27, 354–375 (1970).

    ADS  Google Scholar 

  • KASAHARA, A., and WASHINGTON, W.M., NCAR global general circulation model of the atmosphere. Monthly Weather Rev. 95, 389–402 (1967).

    Article  ADS  Google Scholar 

  • KASAHARA, A., and WASHINGTON, W.M., General circulation experiments with a six-layer NCAR model, including orography, cloudiness and surface temperature calculations. J. Atm. Sciences. 28, 657–701 (1971)

    Article  ADS  Google Scholar 

  • KURIHARA, Y., On the use of implicit and iterative methods for the time integration of the wave equation. Monthly Weather Rev. 93, 33–46 (1965).

    Article  ADS  Google Scholar 

  • KURIHARA, Y., Numerical integration of the primitive equations on a spherical grid. Monthly Weather Rev. 93, 399–416 (1965).

    Article  ADS  Google Scholar 

  • KURIHARA, Y., and HOLLOWAY, J.L., Numerical integration of a nine-level global primitive equations model formulated by the box method. Monthly Weather Rev. 95, 509–530 (1967)

    Article  ADS  Google Scholar 

  • LEITH, C.E., Atmospheric predictability and two dimensional turbulence. J. Atm. Sciences. 28, 145–161 (1971)

    Article  ADS  Google Scholar 

  • LEOVY, C., and MINTZ, Y., Numerical simulation of the atmospheric circulation and climate of Mars. J. Atm. Sciences. 26, 1167–1190 (1969).

    Article  ADS  Google Scholar 

  • LILLY, D.K., On the numerical simulation of buoyant convection. Tellus. 14, 148–172 (1962).

    Article  ADS  Google Scholar 

  • LILLY, D.K., On the computational stability of numerical solutions of time-dependent non-linear geophysical fluid dynamics problems. Monthly Weather Rev. 93, 11–26 (1965).

    Article  ADS  Google Scholar 

  • LILLY, D.K., The representation of small-scale turbulence in numerical simulation experiments. Proceedings IBM Scientific Symposium on Environmental Sciences. 195–206 (1957).

    Google Scholar 

  • LORENZ, E.N., Available potential energy and the maintenance of the general circulation. Tellus. 7, 157–167 (1955).

    Article  ADS  Google Scholar 

  • LORENZ, E.N., The predictability of a flow which possesses many scales of motion. Tellus. 21, 289–307 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  • MANABE, S., SMAGORINSKY, J., and STRICKLER, R.F., Simulated climatology of a general circulation model with a hydrologic cycle. Monthly Weather Rev. 93, 769–798 (1965).

    Article  ADS  Google Scholar 

  • MANABE, S., and HUNT, B., Experiment with a stratospheric general circulation model. Monthly Weather Rev. 96, 477–539 (1968).

    Article  ADS  Google Scholar 

  • MANABE, S., and BRYAN, K., Climate and the ocean circulation. Monthly Weather Rev. 97, 739–827 (1969).

    Article  ADS  Google Scholar 

  • MANABE, S., SMAGORINSKY, J., HOLLOWAY, J.L., and STONE, H.M., Simulated climatology of a general circulation model with a hydrologic cycle. Monthly Weather Rev. 98, 175–212 (1970).

    Article  ADS  Google Scholar 

  • MANABE, S., HOLLOWAY, J.L., and STONE, H.M., Tropical circulation in a Time-Integration of a global model of the atmosphere J. Atm. Sciences. 27, 580–613 (1970).

    Article  ADS  Google Scholar 

  • MILES, J.W., Baroclinic Instability of the Zonal wind. Reviews of Geophysics. 2, 155–176 (1964).

    Article  ADS  Google Scholar 

  • MIYAKODA, et Al. The effect of horizontal grid resolution in a Atmospheric Circulation Model. J. Atm. Sciences. 28, 481–499 (1971).

    Article  ADS  Google Scholar 

  • MURRAY, F.W., Numerical models of a tropical cumulus cloud with bilateral and axial symmetry. Monthly Weather Rev. 98, 14–28 (1970).

    Article  ADS  Google Scholar 

  • OKLAND, H., Experimental integration of a four-level primitive equation model of the atmosphere. Tellus. 21, 359–367 (1969).

    Article  ADS  Google Scholar 

  • OOYAMA, K., Numerical Simulation of the life cycle of Tropical Cyclones. J. Atm. Sciences. 26, 3–40 (1969).

    Article  ADS  Google Scholar 

  • ORSZAG, S.A., Numerical Method for the simulation of turbulence. Phys. Fluids. Suppl. II, 12, 250–257 (1969).

    ADS  Google Scholar 

  • ORSZAG, S., Numerical simulation of incompressible flows within simple boundaries. J. Fluid Mech. 49, 75–112 (1971).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • PHILLIPS, N.A., The general circulation of the atmosphere: a numerical experiment. Quat. J. Royal Met. Soc. 82, 123–164 (1956).

    Article  ADS  Google Scholar 

  • PHILLIPS, N.A., An example of non-linear computational instability. "The Atmosphere and the Sea in Motion" p. 501–504, Oxford Univ. Press (1959).

    Google Scholar 

  • RICHTMYER and MORTON, Difference methods for initial value problems. (second edition) p. 404, Wiley, (1967).

    Google Scholar 

  • ROSENTHAL, S.L., Experiments with a numerical model of tropical cyclone development. Monthly Weather Rev. 98, 106–120 (1970) a.

    Article  ADS  Google Scholar 

  • SOSENTHAL, S.L., A circularly symmetric primitive equations model of tropical cyclone development containing an explicit water vapor cycle. Monthly Weather Rev. 98, 643–663 (1970) b.

    Article  ADS  Google Scholar 

  • SADOURNY, R., ARAKAWA, A., and MINTZ, Y., Integration of the nondivergent barotropic vorticity equation with an icosahedral-hexagonal grid for the sphere. Monthly Weather Rev. 96, 351–356 (1968).

    Article  ADS  Google Scholar 

  • SADOURNY, R., and MOREL, P., A finite difference approximation of the primitive equations for a hexagonal grid on a plane. Monthly Weather Rev. 97, 439–445 (1969).

    Article  ADS  Google Scholar 

  • SADOURNY, R., Approximations en différences finies des équations de Navier-Stokes appliquées à un écoulement géophysique. Ann. de Géophysique. (1972, en préparation).

    Google Scholar 

  • SASAMORI TAKASHI, A numerical study of the Atmospheric circulation on Venus. J. Atm. Sciences. 28, 1045–57 (1971).

    Article  ADS  Google Scholar 

  • SHUMAN, F.G., and HOVERMALE, J.B., An operational six-layer primitive equation model. J. Applied Met. 7, 525–547 (1968).

    Article  ADS  Google Scholar 

  • SUNDQUIST, H., Numerical simulation of the development of tropical cyclones with a ten-level model. Tellus. 22, 359–390 and 504–510 (1970).

    Article  ADS  Google Scholar 

  • WELLCK, R. E., KASAHARA, A., WASHINGTON, W.M., and DE SANTO, G., Effect of horizontal resolution in a finite-difference model of the general circulation. Monthly Weather Rev. 99, 673–683 (1971).

    Article  ADS  Google Scholar 

  • WIIN-NIELSEN, A., On the annual variation and spectral distribution of atmospheric energy. Tellus. 19, 540–559 (1967).

    Article  ADS  Google Scholar 

  • WILLIAMSON, D.L., Integration of the primitive equations over a spherical geodesic grid. Monthly Weather Rev. 98, 512–520 (1970).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Henri Cabannes Roger Temam

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer Verlag

About this paper

Cite this paper

Morel, P. (1973). Atmospheric dynamics and the numerical simulation of atmospheric circulation. In: Cabannes, H., Temam, R. (eds) Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics. Lecture Notes in Physics, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0118661

Download citation

  • DOI: https://doi.org/10.1007/BFb0118661

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-06170-0

  • Online ISBN: 978-3-540-38377-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics