Skip to main content

Using the Hessenberg decomposition in control theory

  • Chapter
  • First Online:
Algorithms and Theory in Filtering and Control

Part of the book series: Mathematical Programming Studies ((MATHPROGRAMM,volume 18))

Abstract

Orthogonal matrix techniques are gaining wide acceptance in applied areas by practitioners who appreciate the value of reliable numerical software. Quality programs that can be used to compute the QR Decomposition, the Singular Value Decomposition, and the Schur Decomposition are primarily responsible for this increased appreciation. A fourth orthogonal matrix decomposition, the Hessenberg Decomposition, has recently been put to good use in certain control theory applications. We describe some of these applications and illustrate why this decomposition can frequently replace the much more costly decomposition of Schur.

This work was partially supported by NSF Grant MCS 8004 106.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Bartels and G.W. Stewart, “A solution of the equation AX+XB=C”, Communications of the Association for Computing Machinery 15 (1972) 820–826.

    Google Scholar 

  2. P. Businger, “Reducing a matrix to Hessenberg form”, Mathematics of Computation 23 (1969) 819–821.

    Article  MATH  MathSciNet  Google Scholar 

  3. W. Enright, “On the efficient and reliable numerical solution of large linear systems of ODE’s”, IEEE Transactions on Automatic Control, AC-24 (1979) 905–908.

    Article  MATH  MathSciNet  Google Scholar 

  4. G.H. Golub, S. Nash and C. Van Loan, “A Hessenberg-Schur method for the problem AX+XB=C”, IEEE Transactions on Automatic Control, AC-24 (1979) 909–913.

    Article  MATH  Google Scholar 

  5. A. Laub, “Efficient multivariable frequency response computations” IEEE Transactions on Automatic Control, AC-26 (1981) 407–408.

    Article  MathSciNet  Google Scholar 

  6. R.S. Martin and J.H. Wilkinson, “Similarity reduction of a general matrix to Hessenberg form”, Numerische Mathematik 12 (1968) 349–368.

    Article  MATH  MathSciNet  Google Scholar 

  7. C.B. Moler and C. Van Loan, “Nineteen dubious ways to compute the exponential of a matrix”, SIAM Review 20 (1978) 801–836.

    Article  MATH  MathSciNet  Google Scholar 

  8. C. Paige, “Properties of numerical algorithms related to computing controllability”, IEEE Transactions on Automatic Control AC-26 (1981) 130–139

    Article  MATH  MathSciNet  Google Scholar 

  9. B.T. Smith, J. Boyle, B. Garbow, M. Ikebe, V. Klema, and C.B. Moler, Matrix eigensystem routines-EISPACK guide (Springer, New York, 1974).

    MATH  Google Scholar 

  10. R.C. Ward, private communication.

    Google Scholar 

  11. J.H. Wilkinson, The algebraic eigenvalue problem (Oxford University Press, New York, 1965).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Danny C. Sorensen Roger J. -B. Wets

Rights and permissions

Reprints and permissions

Copyright information

© 1982 The Mathematical Programming Society, Inc.

About this chapter

Cite this chapter

Van Loan, C. (1982). Using the Hessenberg decomposition in control theory. In: Sorensen, D.C., Wets, R.J.B. (eds) Algorithms and Theory in Filtering and Control. Mathematical Programming Studies, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0120975

Download citation

  • DOI: https://doi.org/10.1007/BFb0120975

  • Received:

  • Revised:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00847-4

  • Online ISBN: 978-3-642-00848-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics