Skip to main content

Solving piecewise linear convex equations

  • Chapter
  • First Online:
Pivoting and Extension

Part of the book series: Mathematical Programming Studies ((MATHPROGRAMM,volume 1))

Abstract

An algorithm is developed for solving F(x)=y, where F:R nR n is convex and piecewise linear. The algorithm is based upon complementary pivoting and proceeds by generating paths of solutions to F(x)=a+bz.

This research was supported in part by Army Research Office, Durham Contract DAHC-04-71-C-0041, and NSF Grant GP-34559.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Artin and H. Braun, Introduction to algebraic topology (Charles E. Merrill, Columbus, Oh., 1969).

    MATH  Google Scholar 

  2. R.W. Cottle and Dantzig, G.B., “A generalization of the linear complementarity problem”, Journal of Combinatorial Theory 8(1) (1970).

    Google Scholar 

    Google Scholar 

  3. G.B. Dantzig, Linear programming and extensions (Princeton University Press, Princeton, N.J., 1963).

    MATH  Google Scholar 

  4. L.L. Dines, “Systems of linear inequalities”, Annals of Mathematics, 2nd Ser. 20 (1919).

    Google Scholar 

  5. B.C. Eaves, “An odd theorem”, Proceedings of the American Mathematical Society, 26(3) (1970) 509–513.

    Article  MATH  MathSciNet  Google Scholar 

  6. B.C. Eaves, “Computing Kakutani fixed points”, SIAM Journal on Applied Mathematics 21(2) (1971) 236–244.

    Article  MATH  MathSciNet  Google Scholar 

  7. B.C. Eaves, “On the basic theorem of complementarity”, Mathematical Programming 1(1) (1971) 68–75.

    Article  MATH  MathSciNet  Google Scholar 

  8. B.C. Eaves, “A fixed point theorem from dynamic programming”, Tech. Rept., Department of Operations Research, Stanford University, Stanford, Calif. (January 1973).

    Google Scholar 

  9. T. Fujisawa and E.S. Kuh, “Some results on existence and uniqueness of solutions of nonlinear networks”, IEEE Transactions on Circuit Theory 18(5) (1971) 501–506.

    Article  MathSciNet  Google Scholar 

  10. T. Fujisawa and E.S. Kuh, “Piecewise-linear theory of nonliear networks”, SIAM Journal on Applied Mathematics 22(2) (1972) 307–328.

    Article  MATH  MathSciNet  Google Scholar 

  11. T. Fujisawa, E.S. Kuh and T. Ohtsuki, “A sparse matrix method for analysis of piecewise-linear resistive networks”, IEEE Transactions on Circuit Theory 19(6) (1972) 571–584.

    Article  MathSciNet  Google Scholar 

  12. R.C. Grinold, “Lagrangian subgradients”, Management Science 17(3) (1970) 185–188.

    Article  MATH  MathSciNet  Google Scholar 

  13. M.W. Hirsch, “A proof of the nonretractibility of a cell onto its boundary”, Proceedings of the American Mathematical Society 14 (1963) 364–365.

    Article  MATH  MathSciNet  Google Scholar 

  14. C. Holzmann, and R.W. Liu, “On the dynamical equations of nonlinear networks with n-coupled elements”, in: Proceedings of the third annual allerton conference on circuit and system theory, October 20–22, 1965, University of Illinois, Urbana, Ill., pp. 536–545.

    Google Scholar 

  15. J. Katzenelson, “An algorithm for solving nonlinear resistor networks”, Bell Telephone Technical Journal 44 (1965) 1605–1620.

    MATH  Google Scholar 

  16. E.S. Kuh and I.N. Hajj, “Nonlinear circuit theory: Resistive networks”, Proceedings of the IEEE 59(3) (1971) 340–355.

    Article  MathSciNet  Google Scholar 

  17. H.W. Kuhn, “Solvability and consistency for linear equations and inequalities”, American Mathematical Monthly LXIII (4) (1956).

    Google Scholar 

    Google Scholar 

  18. C.E. Lemke, “Bimatrix equilibrium points and mathematical programming”, Management Science 11 (1965) 681–689.

    Article  MathSciNet  Google Scholar 

  19. C.E. Lemke, “Recent results on complementarity problems”, in: Nonlinear programming, Eds. J.B. Rosen, O.L. Mangasarian and K. Ritter (Academic Press, New York, 1970).

    Google Scholar 

  20. C.E. Lemke and J.T. Howson, Jr., “Equilibrium points of bimatrix games”, SIAM Journal on Applied Mathematics 12 (1964) 413–423.

    Article  MATH  MathSciNet  Google Scholar 

  21. H. Nikaido, Convex structures and economic theory (Academic Press, New York, 1968).

    MATH  Google Scholar 

  22. J.M. Ortega and W.C. Rheinboldt, Iterative solution of nonlinear equations in several variables (Academic Press, New York, 1970).

    MATH  Google Scholar 

  23. R.S. Palais, “Natural operations on differential forms”, Transactions of the American Mathematical Society 92 (1959).

    Google Scholar 

  24. R.T. Rockafellar, Convex analysis (Princeton University Press, Princeton, N.J., 1970).

    MATH  Google Scholar 

  25. H.E. Scarf, “An algorithm for a class of nonconvex programming problems”, Cowles Foundation Discussion Paper No. 211, Yale University, New Haven, Conn., 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. L. Balinski

Rights and permissions

Reprints and permissions

Copyright information

© 1974 The Mathematical Programming Society

About this chapter

Cite this chapter

Eaves, B.C. (1974). Solving piecewise linear convex equations. In: Balinski, M.L. (eds) Pivoting and Extension. Mathematical Programming Studies, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0121243

Download citation

  • DOI: https://doi.org/10.1007/BFb0121243

  • Received:

  • Revised:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00756-9

  • Online ISBN: 978-3-642-00758-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics