Skip to main content

Algorithm for a least-distance programming problem

  • Chapter
  • First Online:
Pivoting and Extension

Part of the book series: Mathematical Programming Studies ((MATHPROGRAMM,volume 1))

Abstract

An algorithm is developed for the problem of finding the point of smallest Euclidean norm in the convex hull of a given finite point set in a Euclidean space, with particular attention paid to the description of the procedure in geometric terms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.W. Barankin and R. Dorfman, “Toward quadratic programming”, Rept. to the Logistics Branch, Office of Naval Research (January, 1955), unpublished.

    Google Scholar 

  2. E.W. Barankin and R. Dorfman, “On quadratic programming”, University of California Publications in Statistics 2 (1958) 285–318.

    MathSciNet  Google Scholar 

  3. E.M.L. Beale, “Numerical methods”, Parts ii–iv, in: Nonlinear programming, Ed. J. Abadie (North-Holland, Amsterdam, 1967) pp. 143–172.

    Google Scholar 

  4. M.D. Canon and C.D. Cullum, “The determination of optimum separating hyperplans I. A finite step procedure”, RC 2023, IBM Watson Research Center, Yorktown Heights, N.Y. (February, 1968).

    Google Scholar 

  5. R.W. Cottle, “The principal pivoting method of quadratic programming”, in: Mathematics of the decision sciences, Part I, Vol. 11 of Lectures in Applied Mathematics, Eds. G.B. Dantzig and A.F. Veinott (A.M.S., Providence, R.I., 1968) pp. 144–162.

    Google Scholar 

  6. R.W. Cottle and G.B. Dantzig, “Complementary pivot theory”, in: Mathematics of the decision sciences, Part I, Vol. 11 of Lectures in Applied Mathematics, Eds. G.B. Dantzig and A.F. Veinott (A.M.S., Providence, R.I., 1968) pp. 115–136.

    Google Scholar 

  7. G.B. Dantzig, Linear programming and extensions (Princeton University Press, Princeton, N.J., 1963).

    MATH  Google Scholar 

  8. G.B. Dantzig and A.F. Veinott, Eds., Mathematics of the decision sciences, Part I, Vol. 11 of Lectures in Applied Mathematics (A.M.S., Providence, R.I., 1968).

    Google Scholar 

  9. R. Fletcher, “A general quadratic programming algorithm”, T.P. 401, Theoretical Physics Div., U.K.A.E.A. Research Group, A.E.R.E., Harwell (March, 1970).

    Google Scholar 

  10. M. Frank and P. Wolfe, “An algorithm for quadratic programming”, Naval Research Logistics Quarterly 3 (1956) 95–110.

    Article  MathSciNet  Google Scholar 

  11. H.W. Kuhn and A.W. Tucker, “Nonlinear programming”, in: Proceedings of the second Berekeley symposium on mathematical statistics and probability, Ed. J. Neyman (University of California Press, Berkeley, Calif., 1951) pp. 481–492.

    Google Scholar 

  12. C.E. Lemke, “On complementary pivot theory” in: Mathematics of the decision sciences, Part I, Vol. 11 of Lectures in Applied Mathematics, Eds. G.B. Dantzig and A.F. Veinott (A.M.S. Providence, R.I., 1968) pp. 95–114.

    Google Scholar 

  13. T.D. Parsons and A.W. Tucker, “Hybrid programs: linear and least-distance”, Mathematical Programming 1 (1971) 153–167.

    Article  MATH  MathSciNet  Google Scholar 

  14. A.W. Tucker, “Analogues of Kirchoff’s laws”, Preprint LOGS 65, Stanford University Stanford, Calif. (July 1950).

    Google Scholar 

  15. A.W. Tucker, “On Kirchoff’s laws, potential, Lagrange multipliers, etc.”, NAML Rept. 52-17, National Bureau of Standards, Institute for Numerical Analysis, University of California, Los Angeles, Calif. (August, 1951).

    Google Scholar 

  16. A.W. Tucker, “Combinatorial theory underlying linear programs”, in: Recent advances in mathematical programming, Eds. R.L. Graves and P. Wolfe (McGraw-Hill, New York, 1963) pp. 1–16.

    Google Scholar 

  17. A.W. Tucker, “Principal pivot transforms of square matrices”, SIAM Review 5 (1963) 305.

    Google Scholar 

  18. A.W. Tucker, “A least-distance approach to quadratic programming”, in: Mathematics of the decision sciences, Part I, Vol. 11 of Lectures in Applied Mathematics. Eds. G.B. Dantzig and A.F. Veinott (A.M.S., Providence, R.I., 1968) pp. 163–176.

    Google Scholar 

  19. A.W. Tucker, “Least-distance programming”, in: Proceedings of the Princeton symposium on mathematical programming, Ed. H.W. Kuhn (Princeton University Press, Princeton, N. J., 1971) pp. 583–588.

    Google Scholar 

  20. P. Wolfe, “A simplex method for quadratic programming”, ONR Logistics Project Report., Princeton University, Princeton, N. J. (February 1957).

    Google Scholar 

  21. P. Wolfe, “The simplex method for quadratic programming”, Econometrica 27 (1959) 382–393.

    Article  MATH  MathSciNet  Google Scholar 

  22. P. Wolfe, “Finding the nearest point in a polytope”, RC 4887, IBM Research Center, Yorktown Heights, N.Y. (June, 1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. L. Balinski

Rights and permissions

Reprints and permissions

Copyright information

© 1974 The Mathematical Programming Society

About this chapter

Cite this chapter

Wolfe, P. (1974). Algorithm for a least-distance programming problem. In: Balinski, M.L. (eds) Pivoting and Extension. Mathematical Programming Studies, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0121249

Download citation

  • DOI: https://doi.org/10.1007/BFb0121249

  • Received:

  • Revised:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00756-9

  • Online ISBN: 978-3-642-00758-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics