Skip to main content
Log in

Chiral anomalies and AdS/CMT in two dimensions

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

I clarify some recent confusion regarding the holographic description of finite-density systems in two dimensions. Notably, the chiral anomaly for symmetry currents in 2d conformal field theories (CFT) completely determines their correlators. The important exception is a CFT with a gauge theory to which we may couple an external current, as in the probe D3/D3 system or the putative dual to the charged BTZ black hole. These systems are analyzed with an eye for potential condensed matter applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. E. Witten, Nonabelian bosonization in two dimensions, Commun. Math. Phys. 92 (1984) 455 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MATH  MathSciNet  ADS  Google Scholar 

  4. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  5. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  6. S. Gukov, E. Martinec, G.W. Moore and A. Strominger, Chern-Simons gauge theory and the AdS 3 /CFT 2 correspondence, hep-th/0403225 [SPIRES].

  7. D.T. Son and A.O. Starinets, Hydrodynamics of R-charged black holes, JHEP 03 (2006) 052 [hep-th/0601157] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].

    Article  ADS  Google Scholar 

  9. L.-Y. Hung and A. Sinha, Holographic quantum liquids in 1 + 1 dimensions, JHEP 01 (2010) 114 [arXiv:0909.3526] [SPIRES].

    Article  ADS  Google Scholar 

  10. E.O. Colgain and H. Samtleben, 3D gauged supergravity from wrapped M5-branes with AdS/CMT applications, arXiv:1012.2145 [SPIRES].

  11. V. Balasubramanian, I. Garcia-Etxebarria, F. Larsen and J. Simon, Helical Luttinger liquids and three dimensional black holes, arXiv:1012.4363 [SPIRES].

  12. D. Maity, S. Sarkar, N. Sircar, B. Sathiapalan and R. Shankar, Properties of CFTs dual to charged BTZ black-hole, Nucl. Phys. B 839 (2010) 526 [arXiv:0909.4051] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. J. Ren, One-dimensional holographic superconductor from AdS 3 /CFT 2 correspondence, JHEP 11 (2010) 055 [arXiv:1008.3904] [SPIRES].

    Article  ADS  Google Scholar 

  14. D. Marolf and S.F. Ross, Boundary conditions and new dualities: vector fields in AdS/CFT, JHEP 11 (2006) 085 [hep-th/0606113] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. C. Martinez, C. Teitelboim and J. Zanelli, Charged rotating black hole in three spacetime dimensions, Phys. Rev. D 61 (2000) 104013 [hep-th/9912259] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  17. A. D’Adda, A.C. Davis and P. Di Vecchia, Effective actions in nonabelian theories, Phys. Lett. B 121 (1983) 335 [SPIRES].

    ADS  Google Scholar 

  18. J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B 37 (1971) 95 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  19. S. Gukov, E. Martinec, G.W. Moore and A. Strominger, The search for a holographic dual to AdS 3 × S 3 × S 3 × S 1, Adv. Theor. Math. Phys. 9 (2005) 435 [hep-th/0403090] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  20. N. Seiberg and E. Witten, The D1/D5 system and singular CFT , JHEP 04 (1999) 017 [hep-th/9903224] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. F. Larsen, The perturbation spectrum of black holes in N = 8 supergravity, Nucl. Phys. B 536 (1998) 258 [hep-th/9805208] [SPIRES].

    Article  ADS  Google Scholar 

  22. J. Hansen and P. Kraus, Generating charge from diffeomorphisms, JHEP 12 (2006) 009 [hep-th/0606230] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. P. Kraus, Lectures on black holes and the AdS 3 /CFT 2 correspondence, Lect. Notes Phys. 755 (2008) 193 [hep-th/0609074] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  24. S. Elitzur, G.W. Moore, A. Schwimmer and N. Seiberg, Remarks on the canonical quantization of the Chern-Simons-Witten theory, Nucl. Phys. B 326 (1989) 108 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. P. Kraus and F. Larsen, Microscopic black hole entropy in theories with higher derivatives, JHEP 09 (2005) 034 [hep-th/0506176] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. P. Kovtun and A. Ritz, Universal conductivity and central charges, Phys. Rev. D 78 (2008) 066009 [arXiv:0806.0110] [SPIRES].

    ADS  Google Scholar 

  27. A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. J.L. Davis, P. Kraus and A. Shah, Gravity dual of a quantum Hall plateau transition, JHEP 11 (2008) 020 [arXiv:0809.1876] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. M. Fujita, W. Li, S. Ryu and T. Takayanagi, Fractional quantum Hall effect via holography: Chern-Simons, edge states and hierarchy, JHEP 06 (2009) 066 [arXiv:0901.0924] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. C. Hoyos-Badajoz, K. Jensen and A. Karch, A holographic fractional topological insulator, Phys. Rev. D 82 (2010) 086001 [arXiv:1007.3253] [SPIRES].

    ADS  Google Scholar 

  31. O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. N.R. Constable, J. Erdmenger, Z. Guralnik and I. Kirsch, Intersecting D3-branes and holography, Phys. Rev. D 68 (2003) 106007 [hep-th/0211222] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  33. J. Schwinger, The theory of quantized fields. III, Phys. Rev. 91 (1953) 728 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  35. J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. K. Jensen, More holographic Berezinskii-Kosterlitz-Thouless transitions, Phys. Rev. D 82 (2010) 046005 [arXiv:1006.3066] [SPIRES].

    ADS  Google Scholar 

  37. A. Petkou and K. Skenderis, A non-renormalization theorem for conformal anomalies, Nucl. Phys. B 561 (1999) 100 [hep-th/9906030] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  38. A. Strominger, Black hole entropy from near-horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev. D 72 (2005) 086009 [hep-th/0506184] [SPIRES].

    ADS  Google Scholar 

  40. D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. M. Cadoni, M. Melis and M.R. Setare, Microscopic entropy of the charged BTZ black hole, Class. Quant. Grav. 25 (2008) 195022 [arXiv:0710.3009] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  42. J.L. Cardy, Operator content of two-dimensional conformally invariant theories, Nucl. Phys. B 270 (1986) 186 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  43. M. Cubrovic, J. Zaanen and K. Schalm, String theory, quantum phase transitions and the emergent Fermi-liquid, Science 325 (2009) 439 [arXiv:0904.1993] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  44. H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, arXiv:0903.2477 [SPIRES].

  45. D.T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schrödinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  46. K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  47. S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  48. E. Witten, Multi-trace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [SPIRES].

  49. T. Faulkner, G.T. Horowitz and M.M. Roberts, Holographic quantum criticality from multi-trace deformations, arXiv:1008.1581 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristan Jensen.

Additional information

ArXiv ePrint: 1012.4831

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, K. Chiral anomalies and AdS/CMT in two dimensions. J. High Energ. Phys. 2011, 109 (2011). https://doi.org/10.1007/JHEP01(2011)109

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2011)109

Keywords

Navigation