Skip to main content
Log in

Hot halos and galactic glasses (carbonado)

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We initiate a systematic study of the state space of non-extremal, stationary black hole bound states in four-dimensional \( \mathcal{N} = {2} \) supergravity. Specifically, we show that an exponential multitude of classically stable “halo” bound states can be formed between large finite temperature D4-D0 black hole cores and much smaller, arbitrarily charged black holes at the same temperature. We map out in full the regions of existence for thermodynamically stable and metastable bound states in terms of the core’s charges and temperature, as well as the region of stability of the core itself. Several features of these systems, such as a macroscopic configurational entropy and exponential relaxation timescales, are similar to those of the extended family of glasses. We draw parallels between the two with a view toward understanding complex systems in fundamental physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Weyl, The theory of gravitation, Annalen Phys. 54 (1917) 117 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  2. S.D. Majumdar, A class of exact solutions of Einstein’s field equations, Phys. Rev. 72 (1947) 390 [INSPIRE].

    Article  ADS  Google Scholar 

  3. A. Papaetrou, A static solution of the equations of the gravitational field for an arbitrary charge distribution, Proc. Roy. Irish Acad. A 51 (1947) 191 [INSPIRE].

    Google Scholar 

  4. J. Ehlers and W. Kundt, Exact solutions of the gravitational field equations, in Gravitation: an introduction to current research, L. Witten ed., Wiley, New York U.S.A. (1962).

    Google Scholar 

  5. W. Israel and K.A. Khan, Collinear particles and Bondi dipoles in general relativity, Nuovo Cim. 33 (1964) 331.

    Article  MathSciNet  MATH  Google Scholar 

  6. W. Kinnersley and M. Walker, Uniformly accelerating charged mass in general relativity, Phys. Rev. D 2 (1970) 1359 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. W.B. Bonnor, The sources of the vacuum C-metric, Gen. Rel. Grav. 15 (1983) 535.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. D. Kastor and J.H. Traschen, Cosmological multi-black hole solutions, Phys. Rev. D 47 (1993) 5370 [hep-th/9212035] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. K. Behrndt, D. Lu¨st and W.A. Sabra, Stationary solutions of N = 2 supergravity, Nucl. Phys. B 510 (1998) 264 [hep-th/9705169] [INSPIRE].

    ADS  Google Scholar 

  10. I.S. Booth and R.B. Mann, Cosmological pair production of charged and rotating black holes, Nucl. Phys. B 539 (1999) 267 [gr-qc/9806056] [INSPIRE].

    Article  ADS  Google Scholar 

  11. F. Denef, Supergravity flows and D-brane stability, JHEP 08 (2000) 050 [hep-th/0005049] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. G. Lopes Cardoso, B. de Wit, J. Kappeli and T. Mohaupt, Stationary BPS solutions in N = 2 supergravity with R2 interactions, JHEP 12 (2000) 019 [hep-th/0009234] [INSPIRE].

    Article  ADS  Google Scholar 

  13. F. Denef, Quantum quivers and Hall/hole halos, JHEP 10 (2002) 023 [hep-th/0206072] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. B. Bates and F. Denef, Exact solutions for supersymmetric stationary black hole composites, hep-th/0304094 [INSPIRE].

  15. H.S. Tan and E. Teo, Multi-black hole solutions in five-dimensions, Phys. Rev. D 68 (2003) 044021 [hep-th/0306044] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  16. V. Jejjala, O. Madden, S.F. Ross and G. Titchener, Non-supersymmetric smooth geometries and D1-D5-P bound states, Phys. Rev. D 71 (2005) 124030 [hep-th/0504181] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  17. B. Chng, R.B. Mann and C. Stelea, Accelerating Taub-NUT and Eguchi-Hanson solitons in four dimensions, Phys. Rev. D 74 (2006) 084031 [gr-qc/0608092] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. J.B. Griffiths, P. Krtous and J. Podolsky, Interpreting the C-metric, Class. Quant. Grav. 23 (2006) 6745 [gr-qc/0609056] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. H. Ishihara, M. Kimura, K. Matsuno and S. Tomizawa, Kaluza-Klein multi-black holes in five-dimensional Einstein-Maxwell theory, Class. Quant. Grav. 23 (2006) 6919 [hep-th/0605030] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. S. Giusto, S.F. Ross and A. Saxena, Non-supersymmetric microstates of the D1-D5-KK system, JHEP 12 (2007) 065 [arXiv:0708.3845] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. S. Giusto and A. Saxena, Stationary axisymmetric solutions of five dimensional gravity, Class. Quant. Grav. 24 (2007) 4269 [arXiv:0705.4484] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. J. Ford, S. Giusto, A. Peet and A. Saxena, Reduction without reduction: adding KK-monopoles to five dimensional stationary axisymmetric solutions, Class. Quant. Grav. 25 (2008) 075014 [arXiv:0708.3823] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. H. Elvang and P. Figueras, Black saturn, JHEP 05 (2007) 050 [hep-th/0701035] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. M. Rogatko, First law of black saturn thermodynamics, Phys. Rev. D 75 (2007) 124015 [arXiv:0705.3697] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  25. D. Gaiotto, W. Li and M. Padi, Non-supersymmetric attractor flow in symmetric spaces, JHEP 12 (2007) 093 [arXiv:0710.1638] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. J. Camps, R. Emparan, P. Figueras, S. Giusto and A. Saxena, Black rings in Taub-NUT and D0-D6 interactions, JHEP 02 (2009) 021 [arXiv:0811.2088] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. J. Evslin and C. Krishnan, Metastable black saturns, JHEP 09 (2008) 003 [arXiv:0804.4575] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. B. Chng, R.B. Mann, E. Radu and C. Stelea, Charging black saturn?, JHEP 12 (2008) 009 [arXiv:0809.0154] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. I. Bena, S. Giusto, C. Ruef and N.P. Warner, Multi-center non-BPS black holes: the solution, JHEP 11 (2009) 032 [arXiv:0908.2121] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. J.H. Al-Alawi and S.F. Ross, Spectral flow of the non-supersymmetric microstates of the D1-D5-KK system, JHEP 10 (2009) 082 [arXiv:0908.0417] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. C. Stelea, K. Schleich and D. Witt, Charged Kaluza-Klein double-black holes in five dimensions, Phys. Rev. D 83 (2011) 084037 [arXiv:0909.3835] [INSPIRE].

    ADS  Google Scholar 

  32. S. Ferrara, A. Marrani and E. Orazi, Split attractor flow in N = 2 minimally coupled supergravity, Nucl. Phys. B 846 (2011) 512 [arXiv:1010.2280] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. R. Emparan and P. Figueras, Multi-black rings and the phase diagram of higher-dimensional black holes, JHEP 11 (2010) 022 [arXiv:1008.3243] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. D. Anninos and T. Anous, A de Sitter hoedown, JHEP 08 (2010) 131 [arXiv:1002.1717] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. C. Stelea, C. Dariescu and M.-A. Dariescu, Static charged double-black rings in five dimensions, Phys. Rev. D 84 (2011) 044009 [arXiv:1107.3484] [INSPIRE].

    ADS  Google Scholar 

  36. I. Bena, B.D. Chowdhury, J. de Boer, S. El-Showk and M. Shigemori, Moulting black holes, arXiv:1108.0411 [INSPIRE].

  37. C. Stelea, K. Schleich and D. Witt, Non-extremal multi-Kaluza-Klein black holes in five dimensions, arXiv:1108.5145 [INSPIRE].

  38. E. Andriyash, F. Denef, D.L. Jafferis and G.W. Moore, Wall-crossing from supersymmetric galaxies, arXiv:1008.0030 [INSPIRE].

  39. A. Adams and S. Yaida, Disordered holographic systems I: functional renormalization, arXiv:1102.2892 [INSPIRE].

  40. S. Kachru, A. Karch and S. Yaida, Holographic lattices, dimers and glasses, Phys. Rev. D 81 (2010) 026007 [arXiv:0909.2639] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  41. J. Kurchan, Glasses, in Séminaire Poincaré XIII. Verres & Grains, Paris France (2009).

  42. M. Mezard, G. Parisi and M.A. Virasoro, Lecture Notes in Physics. Volume 9: Spin glass theory and beyond, World Scientific (1987) [ISBN 9971501155].

  43. A. Amir, Y. Oreg and Y. Imry, Electron glass dynamics, Annu. Rev. Cond. Mat. Phys. 2 (2011) 235 [arXiv:1010.5767].

    Article  ADS  Google Scholar 

  44. A. Amir, Localization, anomalous diffusion and slow relaxations in disordered systems, http://online.kitp.ucsb.edu/online/electroglass10/amir/.

  45. X. Du, G. Li, E.Y. Andrei, M. Greenblatt and P. Shuk, Ageing memory and glassiness of a driven vortex system, Nat. Phys. 3 (2007) 111.

    Article  Google Scholar 

  46. http://en.wikipedia.org/wiki/Ice cream. Using liquid nitrogen.

  47. P.W. Anderson, Through the glass lightly, Science 267 (1995) 1615.

    Article  Google Scholar 

  48. D. Kennedy and C. Norman, What don’t we know?, Science 309 (2005) 5731.

    Google Scholar 

  49. F. Denef, TASI lectures on complex structures, arXiv:1104.0254 [INSPIRE].

  50. D. Anninos, Classical and quantum symmetries of de Sitter space, Ph.D. Thesis, Harvard University, Cambridge U.S.A. (2011).

  51. J. Gomis, F. Marchesano and D. Mateos, An open string landscape, JHEP 11 (2005) 021 [hep-th/0506179] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. F. Denef and G.W. Moore, Split states, entropy enigmas, holes and halos, hep-th/0702146 [INSPIRE].

  53. P. Kraus and F. Wilczek, Selfinteraction correction to black hole radiance, Nucl. Phys. B 433 (1995) 403 [gr-qc/9408003] [INSPIRE].

    Article  ADS  Google Scholar 

  54. P. Kraus and F. Wilczek, Effect of selfinteraction on charged black hole radiance, Nucl. Phys. B 437 (1995) 231 [hep-th/9411219] [INSPIRE].

    Article  ADS  Google Scholar 

  55. E. Keski-Vakkuri and P. Kraus, Microcanonical D-branes and back reaction, Nucl. Phys. B 491 (1997) 249 [hep-th/9610045] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  56. M.K. Parikh and F. Wilczek, Hawking radiation as tunneling, Phys. Rev. Lett. 85 (2000) 5042 [hep-th/9907001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. B. Vercnocke, Hidden structures of black holes, arXiv:1011.6384 [INSPIRE].

  58. J. Barandes, Special geometry and black holes, to appear.

  59. P. Galli, T. Ortín, J. Perz and C.S. Shahbazi, Non-extremal black holes of N = 2, D = 4 supergravity, JHEP 07 (2011) 041 [arXiv:1105.3311] [INSPIRE].

    Article  ADS  Google Scholar 

  60. B. de Wit, P.G. Lauwers and A. Van Proeyen, Lagrangians of N = 2 supergravity-matter systems, Nucl. Phys. B 255 (1985) 569 [INSPIRE].

    Article  ADS  Google Scholar 

  61. L. Andrianopoli et al., N = 2 supergravity and N = 2 super Yang-Mills theory on general scalar manifolds: symplectic covariance, gaugings and the momentum map, J. Geom. Phys. 23 (1997) 111 [hep-th/9605032] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. M. Billó et al., The 0-brane action in a general D = 4 supergravity background, Class. Quant. Grav. 16 (1999) 2335 [hep-th/9902100] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  63. G.W. Gibbons, Antigravitating black hole solitons with scalar hair in N = 4 supergravity, Nucl. Phys. B 207 (1982) 337 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  64. A. Ceresole and G. Dall’Agata, Flow equations for non-BPS extremal black holes, JHEP 03 (2007) 110 [hep-th/0702088] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  65. J. Perz, P. Smyth, T. Van Riet and B. Vercnocke, First-order flow equations for extremal and non-extremal black holes, JHEP 03 (2009) 150 [arXiv:0810.1528] [INSPIRE].

    Article  ADS  Google Scholar 

  66. S. Ferrara, A. Gnecchi and A. Marrani, D = 4 attractors, effective horizon radius and fake supergravity, Phys. Rev. D 78 (2008) 065003 [arXiv:0806.3196] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  67. E.G. Gimon, F. Larsen and J. Simon, Constituent model of extremal non-BPS black holes, JHEP 07 (2009) 052 [arXiv:0903.0719] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  68. S. Ferrara, G.W. Gibbons and R. Kallosh, Black holes and critical points in moduli space, Nucl. Phys. B 500 (1997) 75 [hep-th/9702103] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  69. D.I. Olive, Classical solutions in gauge theories — spherically symmetric monopoles — Lax pairs and Toda lattices, in Proceedings of the International Summer Institute on Theoretical Physics. Current Topics in Elementary Particle Physics, Bad Honnef Germany, 1–12 Sept 1980, pg. 199–217 [INSPIRE].

  70. P. Davies, Thermodynamics of black holes, Proc. Roy. Soc. Lond. A 353 (1977) 499 [INSPIRE].

    ADS  Google Scholar 

  71. M. Shmakova, Calabi-Yau black holes, Phys. Rev. D 56 (1997) 540 [hep-th/9612076] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  72. J. de Boer, F. Denef, S. El-Showk, I. Messamah and D. Van den Bleeken, Black hole bound states in AdS 3 × S2 , JHEP 11 (2008) 050 [arXiv:0802.2257] [INSPIRE].

    Article  Google Scholar 

  73. D.J. Thouless, P.W. Anderson and R.G. Palmer, Solution of ‘Solvable model of a spin glass’, Phil. Mag. 35 (1977) 593.

    Article  ADS  Google Scholar 

  74. A.J. Bray and M.A. Moore, Metastable states in spin glasses, J. Phys. C 13 (1980) L469.

    ADS  Google Scholar 

  75. R. Monasson, Structural glass transition and the entropy of the metastable states, Phys. Rev. Lett. 75 (1995) 2847 [cond-mat/9503166] [INSPIRE].

    Article  ADS  Google Scholar 

  76. I. Bena, C.-W. Wang and N.P. Warner, Mergers and typical black hole microstates, JHEP 11 (2006) 042 [hep-th/0608217] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  77. P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and black rings, JHEP 06 (2006) 007 [hep-th/0505167] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  78. I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes, Phys. Rev. D 74 (2006) 066001 [hep-th/0505166] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  79. I. Bena, C.-W. Wang and N.P. Warner, The foaming three-charge black hole, Phys. Rev. D 75 (2007) 124026 [hep-th/0604110] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  80. V. Balasubramanian, E.G. Gimon and T.S. Levi, Four dimensional black hole microstates: from D-branes to spacetime foam, JHEP 01 (2008) 056 [hep-th/0606118] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  81. A. Saxena, G. Potvin, S. Giusto and A.W. Peet, Smooth geometries with four charges in four dimensions, JHEP 04 (2006) 010 [hep-th/0509214] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  82. M.C. Cheng, More bubbling solutions, JHEP 03 (2007) 070 [hep-th/0611156] [INSPIRE].

    ADS  Google Scholar 

  83. S. Hawking, Black holes and thermodynamics, Phys. Rev. D 13 (1976) 191 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  84. D.J. Gross, M.J. Perry and L.G. Yaffe, Instability of flat space at finite temperature, Phys. Rev. D 25 (1982) 330 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  85. D.N. Page, Black hole formation in a box, Gen. Rel. Grav. 13 (1981) 1117 [INSPIRE].

    Article  ADS  Google Scholar 

  86. S. Hawking and D.N. Page, Thermodynamics of black holes in anti-de Sitter space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  87. A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  88. S. Carlip and S. Vaidya, Phase transitions and critical behavior for charged black holes, Class. Quant. Grav. 20 (2003) 3827 [gr-qc/0306054] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  89. I. Bredberg, C. Keeler, V. Lysov and A. Strominger, Wilsonian approach to fluid/gravity duality, JHEP 03 (2011) 141 [arXiv:1006.1902] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  90. I. Bena, A. Puhm and B. Vercnocke, Metastable supertubes and non-extremal black hole microstates, arXiv:1109.5180 [INSPIRE].

  91. B.D. Chowdhury and B. Vercnocke, New instability of non-extremal black holes: spitting out supertubes, arXiv:1110.5641 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederik Denef.

Additional information

ArXiv ePrint: 1108.5821

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anninos, D., Anous, T., Barandes, J. et al. Hot halos and galactic glasses (carbonado). J. High Energ. Phys. 2012, 3 (2012). https://doi.org/10.1007/JHEP01(2012)003

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2012)003

Keywords

Navigation