Skip to main content
Log in

h→γγ excess and dark matter from composite Higgs models

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Composite Higgs Models are very appealing candidates for a natural realization of electroweak symmetry breaking. Non minimal models could explain the recent Higgs data from ATLAS, CMS and Tevatron experiments, including the excess in the amount of diphoton events, as well as provide a natural dark matter candidate. In this article, we study a Composite Higgs model based on the coset SO(7)/G2. In addition to the Higgs doublet, one SU(2)L singlet of electric charge one, κ±, as well as one singlet η of the whole Standard Model group arise as pseudo-Goldstone bosons. κ± and η can be responsible of the diphoton excess and dark matter respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.B. Kaplan and H. Georgi, SU(2) × U(1) Breaking by Vacuum Misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].

    Article  ADS  Google Scholar 

  2. D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs Scalars, Phys. Lett. B 136 (1984) 187 [INSPIRE].

    Article  ADS  Google Scholar 

  3. S. Dimopoulos and J. Preskill, Massless composites with massive constituents, Nucl. Phys. B 199 (1982) 206 [INSPIRE].

    Article  ADS  Google Scholar 

  4. TEVNPH (Tevatron New Phenomina and Higgs Working Group), CDF, D0 collaborations, Combined CDF and D0 Search for Standard Model Higgs Boson Production with up to 10.0 f b −1 of Data, arXiv:1203.3774 [INSPIRE].

  5. ATLAS collaboration, An update to the combined search for the Standard Model Higgs boson with the ATLAS detector at the LHC using up to 4.9 fb−1 of pp collision data at \( \sqrt{s}=7 \) TeV, ATLAS-CONF-2012-019 (2012).

  6. CMS collaboration, Combination of SM, SM4, FP Higgs boson searches, CMS-PAS-HIG-12-008.

  7. K. Agashe, R. Contino and A. Pomarol, The Minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].

    Article  ADS  Google Scholar 

  8. R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].

    ADS  Google Scholar 

  9. B. Gripaios, A. Pomarol, F. Riva and J. Serra, Beyond the Minimal Composite Higgs Model, JHEP 04 (2009) 070 [arXiv:0902.1483] [INSPIRE].

    Article  ADS  Google Scholar 

  10. J. Mrazek et al., The Other Natural Two Higgs Doublet Model, Nucl. Phys. B 853 (2011) 1 [arXiv:1105.5403] [INSPIRE].

    Article  ADS  Google Scholar 

  11. M. Redi and A. Tesi, Implications of a Light Higgs in Composite Models, JHEP 10 (2012) 166 [arXiv:1205.0232] [INSPIRE].

    Article  ADS  Google Scholar 

  12. E. Bertuzzo, T.S. Ray, H. de Sandes and C.A. Savoy, On Composite Two Higgs Doublet Models, arXiv:1206.2623 [INSPIRE].

  13. M. Frigerio, A. Pomarol, F. Riva and A. Urbano, Composite Scalar Dark Matter, JHEP 07 (2012) 015 [arXiv:1204.2808] [INSPIRE].

    Article  ADS  Google Scholar 

  14. A. Djouadi, Squark effects on Higgs boson production and decay at the LHC, Phys. Lett. B 435 (1998) 101 [hep-ph/9806315] [INSPIRE].

    Article  ADS  Google Scholar 

  15. F.J. Petriello, Kaluza-Klein effects on Higgs physics in universal extra dimensions, JHEP 05 (2002) 003 [hep-ph/0204067] [INSPIRE].

    Article  ADS  Google Scholar 

  16. T. Han, H.E. Logan, B. McElrath and L.-T. Wang, Loop induced decays of the little Higgs: Hgg, γγ, Phys. Lett. B 563 (2003) 191 [Erratum ibid. B 603 (2004) 257] [hep-ph/0302188] [INSPIRE].

    Article  ADS  Google Scholar 

  17. C.-R. Chen, K. Tobe and C.-P. Yuan, Higgs boson production and decay in little Higgs models with T-parity, Phys. Lett. B 640 (2006) 263 [hep-ph/0602211] [INSPIRE].

    Article  ADS  Google Scholar 

  18. R. Dermisek and I. Low, Probing the Stop Sector and the Sanity of the MSSM with the Higgs Boson at the LHC, Phys. Rev. D 77 (2008) 035012 [hep-ph/0701235] [INSPIRE].

    ADS  Google Scholar 

  19. I. Low and S. Shalgar, Implications of the Higgs Discovery in the MSSM Golden Region, JHEP 04 (2009) 091 [arXiv:0901.0266] [INSPIRE].

    Article  ADS  Google Scholar 

  20. I. Low, R. Rattazzi and A. Vichi, Theoretical Constraints on the Higgs Effective Couplings, JHEP 04 (2010) 126 [arXiv:0907.5413] [INSPIRE].

    Article  ADS  Google Scholar 

  21. G. Cacciapaglia, A. Deandrea and J. Llodra-Perez, H → γγ beyond the Standard Model, JHEP 06 (2009) 054 [arXiv:0901.0927] [INSPIRE].

    Article  ADS  Google Scholar 

  22. S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, The Custodial Randall-Sundrum Model: from Precision Tests to Higgs Physics, JHEP 09 (2010) 014 [arXiv:1005.4315] [INSPIRE].

    Article  ADS  Google Scholar 

  23. K. Cheung and T.-C. Yuan, Could the excess seen at 124-126 GeV be due to the Randall-Sundrum Radion?, Phys. Rev. Lett. 108 (2012) 141602 [arXiv:1112.4146] [INSPIRE].

    Article  ADS  Google Scholar 

  24. M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].

    Article  ADS  Google Scholar 

  25. J. Cao, Z. Heng, T. Liu and J.M. Yang, Di-photon Higgs signal at the LHC: a Comparative study for different supersymmetric models, Phys. Lett. B 703 (2011) 462 [arXiv:1103.0631] [INSPIRE].

    Article  ADS  Google Scholar 

  26. B. Batell, S. Gori and L.-T. Wang, Exploring the Higgs Portal with 10/fb at the LHC, JHEP 06 (2012) 172 [arXiv:1112.5180] [INSPIRE].

    Article  ADS  Google Scholar 

  27. A. Arvanitaki and G. Villadoro, A Non Standard Model Higgs at the LHC as a Sign of Naturalness, JHEP 02 (2012) 144 [arXiv:1112.4835] [INSPIRE].

    Article  ADS  Google Scholar 

  28. V. Barger, M. Ishida and W.-Y. Keung, Total Width of 125 GeV Higgs Boson, Phys. Rev. Lett. 108 (2012) 261801 [arXiv:1203.3456] [INSPIRE].

    Article  ADS  Google Scholar 

  29. N. Arkani-Hamed, K. Blum, R.T. D’Agnolo and J. Fan, 2:1 for Naturalness at the LHC?, arXiv:1207.4482 [INSPIRE].

  30. A. Arhrib, R. Benbrik and C.-H. Chen, H → γγ in the Complex Two Higgs Doublet Model, arXiv:1205.5536 [INSPIRE].

  31. A. Alves et al., Probing 3-3-1 Models in Diphoton Higgs Boson Decay, Phys. Rev. D 84 (2011) 115004 [arXiv:1109.0238] [INSPIRE].

    ADS  Google Scholar 

  32. H.M. Lee, M. Park and W.-I. Park, Axion-mediated dark matter and Higgs diphoton signal, JHEP 12 (2012) 037 [arXiv:1209.1955] [INSPIRE].

    Article  ADS  Google Scholar 

  33. J. Kearney, A. Pierce and N. Weiner, Vectorlike Fermions and Higgs Couplings, Phys. Rev. D 86 (2012) 113005 [arXiv:1207.7062] [INSPIRE].

    ADS  Google Scholar 

  34. S. Kanemura and K. Yagyu, Radiative corrections to electroweak parameters in the Higgs triplet model and implication with the recent Higgs boson searches, Phys. Rev. D 85 (2012) 115009 [arXiv:1201.6287] [INSPIRE].

    ADS  Google Scholar 

  35. A. Joglekar, P. Schwaller and C.E. Wagner, Dark Matter and Enhanced Higgs to Di-photon Rate from Vector-like Leptons, JHEP 12 (2012) 064 [arXiv:1207.4235] [INSPIRE].

    Article  ADS  Google Scholar 

  36. I. Dorsner, S. Fajfer, A. Greljo and J.F. Kamenik, Higgs Uncovering Light Scalar Remnants of High Scale Matter Unification, JHEP 11 (2012) 130 [arXiv:1208.1266] [INSPIRE].

    Article  ADS  Google Scholar 

  37. L.G. Almeida, E. Bertuzzo, P.A. Machado and R.Z. Funchal, Does H → γγ Taste like vanilla New Physics?, JHEP 11 (2012) 085 [arXiv:1207.5254] [INSPIRE].

    Article  ADS  Google Scholar 

  38. P. Draper and D. McKeen, Diphotons from Tetraphotons in the Decay of a 125 GeV Higgs at the LHC, Phys. Rev. D 85 (2012) 115023 [arXiv:1204.1061] [INSPIRE].

    ADS  Google Scholar 

  39. A. Akeroyd and S. Moretti, Enhancement of H → γγ from doubly charged scalars in the Higgs Triplet Model, Phys. Rev. D 86 (2012) 035015 [arXiv:1206.0535] [INSPIRE].

    ADS  Google Scholar 

  40. S. Dawson and E. Furlan, A Higgs Conundrum with Vector Fermions, Phys. Rev. D 86 (2012) 015021 [arXiv:1205.4733] [INSPIRE].

    ADS  Google Scholar 

  41. N.D. Christensen, T. Han and S. Su, MSSM Higgs Bosons at The LHC, Phys. Rev. D 85 (2012) 115018 [arXiv:1203.3207] [INSPIRE].

    ADS  Google Scholar 

  42. M. Carena, I. Low and C.E. Wagner, Implications of a Modified Higgs to Diphoton Decay Width, JHEP 08 (2012) 060 [arXiv:1206.1082] [INSPIRE].

    Article  ADS  Google Scholar 

  43. A. Delgado, G. Nardini and M. Quirós, Large diphoton Higgs rates from supersymmetric triplets, Phys. Rev. D 86 (2012) 115010 [arXiv:1207.6596] [INSPIRE].

    ADS  Google Scholar 

  44. E.J. Chun, H.M. Lee and P. Sharma, Vacuum Stability, Perturbativity, EWPD and Higgs-to-diphoton rate in Type II Seesaw Models, JHEP 11 (2012) 106 [arXiv:1209.1303] [INSPIRE].

    Article  ADS  Google Scholar 

  45. A. Carmona, M. Chala and J. Santiago, New Higgs Production Mechanism in Composite Higgs Models, JHEP 07 (2012) 049 [arXiv:1205.2378] [INSPIRE].

    Article  ADS  Google Scholar 

  46. N. Vignaroli, Early discovery of top partners and test of the Higgs nature, Phys. Rev. D 86 (2012) 075017 [arXiv:1207.0830] [INSPIRE].

    ADS  Google Scholar 

  47. R. Barcelo, A. Carmona, M. Chala, M. Masip and J. Santiago, Single Vectorlike Quark Production at the LHC, Nucl. Phys. B 857 (2012) 172 [arXiv:1110.5914] [INSPIRE].

    Article  ADS  Google Scholar 

  48. C. Bini, R. Contino and N. Vignaroli, Heavy-light decay topologies as a new strategy to discover a heavy gluon, JHEP 01 (2012) 157 [arXiv:1110.6058] [INSPIRE].

    Article  ADS  Google Scholar 

  49. G. Brooijmans et al., Les Houches 2011: Physics at TeV Colliders New Physics Working Group Report, arXiv:1203.1488 [INSPIRE].

  50. R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong Double Higgs Production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [INSPIRE].

    Article  ADS  Google Scholar 

  51. R. Grober and M. Muhlleitner, Composite Higgs Boson Pair Production at the LHC, JHEP 06 (2011) 020 [arXiv:1012.1562] [INSPIRE].

    Article  ADS  Google Scholar 

  52. R. Contino et al., Anomalous Couplings in Double Higgs Production, JHEP 08 (2012) 154 [arXiv:1205.5444] [INSPIRE].

    Article  ADS  Google Scholar 

  53. M. Gillioz, R. Grober, C. Grojean, M. Muhlleitner and E. Salvioni, Higgs Low-Energy Theorem (and its corrections) in Composite Models, JHEP 10 (2012) 004 [arXiv:1206.7120] [INSPIRE].

    Article  ADS  Google Scholar 

  54. M. Günaydin and F. Gürsey, Quark structure and octonions, J. Math. Phys. 14 (1973) 1651 [INSPIRE].

    Article  MATH  Google Scholar 

  55. J.M. Evans, Supersymmetry algebras and Lorentz invariance for D = 10 super Yang-Mills, Phys. Lett. B 334 (1994) 105 [hep-th/9404190] [INSPIRE].

    Article  ADS  Google Scholar 

  56. M. Günaydin and S.V. Ketov, Seven sphere and the exceptional N = 7 and N = 8 superconformal algebras, Nucl. Phys. B 467 (1996) 215 [hep-th/9601072] [INSPIRE].

    Article  ADS  Google Scholar 

  57. K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A Custodial symmetry for Zbb, Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].

    Article  ADS  Google Scholar 

  58. A. De Rujula, S. Glashow and U. Sarid, Charged dark matter, Nucl. Phys. B 333 (1990) 173 [INSPIRE].

    Article  ADS  Google Scholar 

  59. S. Dimopoulos, D. Eichler, R. Esmailzadeh and G.D. Starkman, Getting a charge out of dark matter, Phys. Rev. D 41 (1990) 2388 [INSPIRE].

    ADS  Google Scholar 

  60. R.S. Chivukula, A.G. Cohen, S. Dimopoulos and T.P. Walker, Bounds on halo particle interactions from interstellar calorimetry, Phys. Rev. Lett. 65 (1990) 957 [INSPIRE].

    Article  ADS  Google Scholar 

  61. A. Gould, B.T. Draine, R.W. Romani and S. Nussinov, Neutron stars: graveyard of charged dark matter, Phys. Lett. B 238 (1990) 337 [INSPIRE].

    Article  ADS  Google Scholar 

  62. S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].

    ADS  Google Scholar 

  63. E. Witten, Some Inequalities Among Hadron Masses, Phys. Rev. Lett. 51 (1983) 2351 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  64. R. Jackiw, Functional evaluation of the effective potential, Phys. Rev. D 9 (1974) 1686 [INSPIRE].

    ADS  Google Scholar 

  65. S. Weinberg, Precise relations between the spectra of vector and axial vector mesons, Phys. Rev. Lett. 18 (1967) 507 [INSPIRE].

    Article  ADS  Google Scholar 

  66. D. Marzocca, M. Serone and J. Shu, General Composite Higgs Models, JHEP 08 (2012) 013 [arXiv:1205.0770] [INSPIRE].

    Article  ADS  Google Scholar 

  67. A. Pomarol and F. Riva, The Composite Higgs and Light Resonance Connection, JHEP 08 (2012) 135 [arXiv:1205.6434] [INSPIRE].

    Article  ADS  Google Scholar 

  68. J. Espinosa, C. Grojean and M. Muhlleitner, Composite Higgs under LHC Experimental Scrutiny, EPJ Web Conf. 28 (2012) 08004 [arXiv:1202.1286] [INSPIRE].

    Article  Google Scholar 

  69. G. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].

    Article  ADS  Google Scholar 

  70. O. Matsedonskyi, G. Panico and A. Wulzer, Light Top Partners for a Light Composite Higgs, arXiv:1204.6333 [INSPIRE].

  71. A. Azatov and J. Galloway, Light Custodians and Higgs Physics in Composite Models, Phys. Rev. D 85 (2012) 055013 [arXiv:1110.5646] [INSPIRE].

    ADS  Google Scholar 

  72. M. Montull and F. Riva, Higgs discovery: the beginning or the end of natural EWSB?, JHEP 11 (2012) 018 [arXiv:1207.1716] [INSPIRE].

    Article  ADS  Google Scholar 

  73. A. Azatov, R. Contino and J. Galloway, Model-Independent Bounds on a Light Higgs, JHEP 04 (2012) 127 [arXiv:1202.3415] [INSPIRE].

    Article  ADS  Google Scholar 

  74. J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, Fingerprinting Higgs Suspects at the LHC, JHEP 05 (2012) 097 [arXiv:1202.3697] [INSPIRE].

    Article  ADS  Google Scholar 

  75. T. Corbett, O. Eboli, J. Gonzalez-Fraile and M. Gonzalez-Garcia, Constraining anomalous Higgs interactions, Phys. Rev. D 86 (2012) 075013 [arXiv:1207.1344] [INSPIRE].

    ADS  Google Scholar 

  76. D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs Results from Natural New Physics Perspective, JHEP 07 (2012) 136 [arXiv:1202.3144] [INSPIRE].

    Article  ADS  Google Scholar 

  77. S. Weinberg, The Quantum Theory of Fields (Volume 1), Cambridge University Press, Cambridge, U.K (1995) [ISBN 0521550017].

  78. L. Álvarez-Gaumé and P.H. Ginsparg, Geometry anomalies, Nucl. Phys. B 262 (1985) 439 [INSPIRE].

    Article  ADS  Google Scholar 

  79. Y. Mambrini, Higgs searches and singlet scalar dark matter: combined constraints from XENON 100 and the LHC, Phys. Rev. D 84 (2011) 115017 [arXiv:1108.0671] [INSPIRE].

    ADS  Google Scholar 

  80. C.E. Yaguna, Gamma rays from the annihilation of singlet scalar dark matter, JCAP 03 (2009) 003 [arXiv:0810.4267] [INSPIRE].

    Article  ADS  Google Scholar 

  81. V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  82. J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].

    ADS  Google Scholar 

  83. W.-L. Guo and Y.-L. Wu, The Real singlet scalar dark matter model, JHEP 10 (2010) 083 [arXiv:1006.2518] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  84. M. Farina, D. Pappadopulo and A. Strumia, CDMS stands for Constrained Dark Matter Singlet, Phys. Lett. B 688 (2010) 329 [arXiv:0912.5038] [INSPIRE].

    Article  ADS  Google Scholar 

  85. A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].

    Article  ADS  Google Scholar 

  86. C. Burgess, M. Pospelov and T. ter Veldhuis, The Minimal model of nonbaryonic dark matter: a singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].

    Article  ADS  Google Scholar 

  87. R. Cerezo, M. Chala and J.M. Lizana, in preparation (2012).

  88. CMS collaboration, Search for a W boson decaying to a bottom quark and a top quark in pp collisions at \( \sqrt{s}=7 \) TeV, arXiv:1208.0956 [INSPIRE].

  89. CDF collaboration, D. Acosta et al., Search for a W boson decaying to a top and bottom quark pair in 1.8 TeV \( p\overline{p} \) collisions, Phys. Rev. Lett. 90 (2003) 081802 [hep-ex/0209030] [INSPIRE].

    Article  ADS  Google Scholar 

  90. D0 collaboration, V. Abazov et al., Search for W Boson Resonances Decaying to a Top Quark and a Bottom Quark, Phys. Rev. Lett. 100 (2008) 211803 [arXiv:0803.3256] [INSPIRE].

    Article  ADS  Google Scholar 

  91. Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  92. CMS collaboration, Search for leptonic decays of W bosons in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 08 (2012) 023 [arXiv:1204.4764] [INSPIRE].

    ADS  Google Scholar 

  93. CMS collaboration, Search for narrow resonances in dilepton mass spectra in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 714 (2012) 158 [arXiv:1206.1849] [INSPIRE].

    ADS  Google Scholar 

  94. ATLAS collaboration, Search for high-mass resonances decaying to dilepton final states in pp collisions at \( \sqrt{s}=7-TeV \) with the ATLAS detector, JHEP 11 (2012) 138 [arXiv:1209.2535] [INSPIRE].

    ADS  Google Scholar 

  95. ATLAS collaboration, ATLAS search for a heavy gauge boson decaying to a charged lepton and a neutrino in pp collisions at \( \sqrt{s}=7 \) TeV, arXiv:1209.4446 [INSPIRE].

  96. CMS collaboration, Search for Resonances in the Dijet Mass Spectrum from 7 TeV pp Collisions at CMS, Phys. Lett. B 704 (2011) 123 [arXiv:1107.4771] [INSPIRE].

    ADS  Google Scholar 

  97. ATLAS collaboration, Search for New Physics in the Dijet Mass Distribution using 1 fb −1 of pp Collision Data at \( \sqrt{s}=7 \) TeV collected by the ATLAS Detector, Phys. Lett. B 708 (2012) 37 [arXiv:1108.6311] [INSPIRE].

    ADS  Google Scholar 

  98. R. Barcelo, A. Carmona, M. Masip and J. Santiago, Stealth gluons at hadron colliders, Phys. Lett. B 707 (2012) 88 [arXiv:1106.4054] [INSPIRE].

    Article  ADS  Google Scholar 

  99. A. Cagil and H. Dag, Pair production of single and double charged scalar pairs and their lepton flavor violating signals in the littlest Higgs model at LHC, arXiv:1203.2232 [INSPIRE].

  100. K. Huitu, J. Laitinen, J. Maalampi and N. Romanenko, Singly charged Higgses at linear collider, Nucl. Phys. B 598 (2001) 13 [hep-ph/0006261] [INSPIRE].

    Article  ADS  Google Scholar 

  101. A. Akeroyd and H. Sugiyama, Production of doubly charged scalars from the decay of singly charged scalars in the Higgs Triplet Model, Phys. Rev. D 84 (2011) 035010 [arXiv:1105.2209] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikael Chala.

Additional information

ArXiv ePrint: 1210.6208

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chala, M. h→γγ excess and dark matter from composite Higgs models. J. High Energ. Phys. 2013, 122 (2013). https://doi.org/10.1007/JHEP01(2013)122

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2013)122

Keywords

Navigation