Skip to main content
Log in

Relativistic CFT hydrodynamics from the membrane paradigm

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We use the membrane paradigm to analyze the horizon dynamics of a uniformly boosted black brane in a (d + 2)-dimensional asymptotically Anti-de-Sitter space-time and a Rindler acceleration horizon in (d + 2)-dimensional Minkowski space-time. We show that in these cases the horizon dynamics is governed by the relativistic CFT hydrodynamics equations. The fluid velocity and temperature correspond to the normal to the horizon and to the surface gravity, respectively. The second law of thermodynamics for the fluid is mapped into the area increase theorem of General Relativity. The analysis is applicable, in general, to perturbations around a stationary horizon, when the scale of variations of the macroscopic fields is much larger than the inverse of the temperature. We show that the non-relativistic limit of our analysis yields the incompressible Navier-Stokes equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MATH  MathSciNet  ADS  Google Scholar 

  2. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [SPIRES].

    Article  ADS  Google Scholar 

  4. I. Fouxon and Y. Oz, CFT hydrodynamics: symmetries, exact solutions and gravity, JHEP 03 (2009) 120 [arXiv:0812.1266] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. I. Fouxon and Y. Oz, Conformal field theory as microscopic dynamics of incompressible Euler and Navier-Stokes equations, Phys. Rev. Lett. 101 (2008) 261602 [arXiv:0809.4512] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. S. Bhattacharyya, S. Minwalla and S.R. Wadia, The incompressible non-relativistic Navier-Stokes equation from gravity, JHEP 08 (2009) 059 [arXiv:0810.1545] [SPIRES].

    Article  ADS  Google Scholar 

  7. S. Bhattacharyya et al., Local fluid dynamical entropy from gravity, JHEP 06 (2008) 055 [arXiv:0803.2526] [SPIRES].

    Article  ADS  Google Scholar 

  8. T. Damour, Quelques propriétés mécaniques, électromagneetiques, thermodynamiques et quantiques des trous noirs, these de doctorat d’etat, University of Paris VI, Paris, France (1979).

  9. T. Damour, Surface effects in black-hole physics, in the proceedings of the 2nd Marcel Grossmann meeting on general relativity, R. Ruffini eds., North-Holland, Amsterdam The Netherlands (1982), pag. 587.

    Google Scholar 

  10. T. Damour and M. Lilley, String theory, gravity and experiment, arXiv:0802.4169 [SPIRES].

  11. R.H. Price and K.S. Thorne, Membrane viewpoint on black holes: properties and evolution of the stretched horizon, Phys. Rev. D 33 (1986) 915 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  12. K.S. Thorne, R.H. Price and D.A. Macdonald, Black holes: the membrane paradigm, Yale University Press, U.S.A. (1986).

    Google Scholar 

  13. P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: diffusion on stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. O. Saremi, Shear waves, sound waves on a shimmering horizon, hep-th/0703170 [SPIRES].

  15. M. Fujita, Non-equilibrium thermodynamics near the horizon and holography, JHEP 10 (2008) 031 [arXiv:0712.2289] [SPIRES].

    Article  ADS  Google Scholar 

  16. A.O. Starinets, Quasinormal spectrum and the black hole membrane paradigm, Phys. Lett. B 670 (2009) 442 [arXiv:0806.3797] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  17. N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [SPIRES].

    ADS  Google Scholar 

  18. C. Eling, I. Fouxon and Y. Oz, The incompressible Navier-Stokes equations from membrane dynamics, Phys. Lett. B 680 (2009) 496 [arXiv:0905.3638] [SPIRES].

    Google Scholar 

  19. L.D. Landau and E.M. Lifshitz, Fluid mechanics, Butterworth-Heinemann, U.K. (2000).

    Google Scholar 

  20. R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP 04 (2008) 100 [arXiv:0712.2451] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. S. Jeon and L.G. Yaffe, From quantum field theory to hydrodynamics: transport coefficients and effective kinetic theory, Phys. Rev. D 53 (1996) 5799 [hep-ph/9512263] [SPIRES].

    ADS  Google Scholar 

  22. M. Parikh and F. Wilczek, An action for black hole membranes, Phys. Rev. D 58 (1998) 064011 [gr-qc/9712077] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  23. E. Gourgoulhon and J.L. Jaramillo, A 3 + 1 perspective on null hypersurfaces and isolated horizons, Phys. Rept. 423 (2006) 159 [gr-qc/0503113] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. M. Mars and J.M.M. Senovilla, Geometry of general hypersurfaces in spacetime: junction conditions, Class. Quant. Grav. 10 (1993) 1865 [gr-qc/0201054] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. R.K. Gupta and A. Mukhopadhyay, On the universal hydrodynamics of strongly coupled CFTs with gravity duals, JHEP 03 (2009) 067 [arXiv:0810.4851] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. W.G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [SPIRES].

    ADS  Google Scholar 

  28. C. Eling, Hydrodynamics of spacetime and vacuum viscosity, JHEP 11 (2008) 048 [arXiv:0806.3165] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black holes, JHEP 01 (2009) 055 [arXiv:0809.2488] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. N. Banerjee et al., Hydrodynamics from charged black branes, arXiv:0809.2596 [SPIRES].

  31. I. Kanitscheider and K. Skenderis, Universal hydrodynamics of non-conformal branes, JHEP 04 (2009) 062 [arXiv:0901.1487] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. S. Dutta, Higher derivative corrections to locally black brane metrics, JHEP 05 (2008) 082 [arXiv:0804.2453] [SPIRES].

    Article  ADS  Google Scholar 

  33. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity bound violation in higher derivative gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [SPIRES].

    ADS  Google Scholar 

  34. Y. Kats and P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory, JHEP 01 (2009) 044 [arXiv:0712.0743] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  35. R. Brustein and A.J.M. Medved, The ratio of shear viscosity to entropy density in generalized theories of gravity, Phys. Rev. D 79 (2009) 021901 [arXiv:0808.3498] [SPIRES].

    ADS  Google Scholar 

  36. A. Buchel, R.C. Myers and A. Sinha, Beyond η/s = 1/4π, JHEP 03 (2009) 084 [arXiv:0812.2521] [SPIRES].

    Article  ADS  Google Scholar 

  37. S. Cremonini, K. Hanaki, J.T. Liu and P. Szepietowski, Higher derivative effects on η/s at finite chemical potential, Phys. Rev. D 80 (2009) 025002 [arXiv:0903.3244] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Eling.

Additional information

ArXiv ePrint: 0906.4999

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eling, C., Oz, Y. Relativistic CFT hydrodynamics from the membrane paradigm. J. High Energ. Phys. 2010, 69 (2010). https://doi.org/10.1007/JHEP02(2010)069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2010)069

Keywords

Navigation