Skip to main content
Log in

Fermions and noncommutative emergent gravity II: curved branes in extra dimensions

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study fermions coupled to Yang-Mills matrix models from the point of view of emergent gravity. The matrix model Dirac operator provides an appropriate coupling for fermions to the effective gravitational metric for general branes with nontrivial embedding, albeit with a non-standard spin connection. This generalizes previous results for 4-dimensional matrix models. Integrating out the fermions in a nontrivial geometrical background induces indeed the Einstein-Hilbert action of the effective metric, as well as additional terms which couple the Poisson tensor to the Riemann tensor, and a dilaton-like term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.R. Douglas and N.A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys. 73 (2001) 977 [hep-th/0106048] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. R.J. Szabo, Quantum field theory on noncommutative spaces, Phys. Rept. 378 (2003) 207 [hep-th/0109162] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  3. R.J. Szabo, Quantum gravity, field theory and signatures of noncommutative spacetime, Gen. Rel. Grav. 42 (2010) 1 [arXiv:0906.2913] [SPIRES].

    Article  Google Scholar 

  4. H. Steinacker, Emergent gravity from noncommutative gauge theory, JHEP 12 (2007) 049 [arXiv:0708.2426] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. H. Grosse, H. Steinacker and M. Wohlgenannt, Emergent gravity, matrix models and UV/IR mixing, JHEP 04 (2008) 023 [arXiv:0802.0973] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. D. Klammer and H. Steinacker, Fermions and emergent noncommutative gravity, JHEP 08 (2008) 074 [arXiv:0805.1157] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. H. Steinacker, Emergent gravity and noncommutative branes from Yang-Mills matrix models, Nucl. Phys. B 810 (2009) 1 [arXiv:0806.2032] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. H. Steinacker, Covariant field equations, gauge fields and conservation laws from Yang-Mills matrix models, JHEP 02 (2009) 044 [arXiv:0812.3761] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. D. Klammer and H. Steinacker, Cosmological solutions of emergent noncommutative gravity, Phys. Rev. Lett. 102 (2009) 221301 [arXiv:0903.0986] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. H. Steinacker, On the Newtonian limit of emergent NC gravity and long-distance corrections, JHEP 12 (2009) 024 [arXiv:0909.4621] [SPIRES].

    Article  Google Scholar 

  11. V.O. Rivelles, Noncommutative field theories and gravity, Phys. Lett. B 558 (2003) 191 [hep-th/0212262] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  12. H.S. Yang, Emergent gravity from noncommutative spacetime, Int. J. Mod. Phys. A 24 (2009) 4473 [hep-th/0611174] [SPIRES].

    Google Scholar 

  13. P.B. Gilkey, Invariance theory, the heat equation and the Atiyah-Singer index theorem, Publish or Perish, Wilmington U.S.A. (1984).

    MATH  Google Scholar 

  14. D.V. Vassilevich, Heat kernel expansion: User’s manual, Phys. Rept. 388 (2003) 279 [hep-th/0306138] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, A large-N reduced model as superstring, Nucl. Phys. B 498 (1997) 467 [hep-th/9612115] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. M. Kontsevich, Deformation quantization of Poisson manifolds, I, Lett. Math. Phys. 66 (2003) 157 [q-alg/9709040] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. S. Weinberg, Gravitation and cosmology, Wiley, New York U.S.A. (1972).

    Google Scholar 

  18. E. Witten, A simple proof of the positive energy theorem, Commun. Math. Phys. 80 (1981) 381 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. A.D. Sakharov, Vacuum quantum fluctuations in curved space and the theory of gravitation, Sov. Phys. Dokl. 12 (1968) 1040 [Dokl. Akad. Nauk Ser. Fiz. 177 (1967) 70] [Sov. Phys. Usp. 34 (1991) 394] [Gen. Rel. Grav. 32 (2000) 365] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Klammer.

Additional information

ArXiv ePrint: 0909.5298

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klammer, D., Steinacker, H. Fermions and noncommutative emergent gravity II: curved branes in extra dimensions. J. High Energ. Phys. 2010, 74 (2010). https://doi.org/10.1007/JHEP02(2010)074

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2010)074

Keywords

Navigation