Skip to main content
Log in

The sphaleron rate in SU(N) gauge theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The sphaleron rate is defined as the diffusion constant for topological number \( {N_{\text{CS}}} \equiv \int {\frac{{{g^2}F\tilde{F}}}{{32{\pi^2}}}} \). It establishes the rate of equilibration of axial light quark number in QCD and is of interest both in electroweak baryogenesis and possibly in heavy ion collisions. We calculate the weak-coupling behavior of the SU(3) sphaleron rate, as well as making the most sensible extrapolation towards intermediate coupling which we can. We also study the behavior of the sphaleron rate at weak coupling at large N c .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Belavin, A.M. Polyakov, A.S. Schwartz and Y.S. Tyupkin, Pseudoparticle solutions of the Yang-Mills equations, Phys. Lett. B 59 (1975) 85 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  2. S.L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev. 177 (1969) 2426 [SPIRES].

    Article  ADS  Google Scholar 

  3. J.S. Bell and R. Jackiw, A PCAC puzzle: π 0γγ in the σ-model, Nuovo Cim. A 60 (1969) 47 [SPIRES].

    Article  ADS  Google Scholar 

  4. G. ’t Hooft, Computation of the quantum effects due to a four-dimensional pseudoparticle, Phys. Rev. D 14 (1976) 3432 [Erratum ibid. D 18 (1978) 2199] [SPIRES].

    ADS  Google Scholar 

  5. F.R. Klinkhamer and N.S. Manton, A Saddle Point Solution in the Weinberg-Salam Theory, Phys. Rev. D 30 (1984) 2212 [SPIRES].

    ADS  Google Scholar 

  6. V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe, Phys. Lett. B 155 (1985) 36 [SPIRES].

    ADS  Google Scholar 

  7. P.B. Arnold and L.D. McLerran, Sphalerons, Small Fluctuations And Baryon Number Violation In Electroweak Theory, Phys. Rev. D 36 (1987) 581 [SPIRES].

    ADS  Google Scholar 

  8. V.A. Rubakov and M.E. Shaposhnikov, Electroweak baryon number non-conservation in the early universe and in high-energy collisions, Usp. Fiz. Nauk 166 (1996) 493 [Phys. Usp. 39 (1996) 461] [hep-ph/9603208] [SPIRES].

    Article  Google Scholar 

  9. J.M. Cline, Baryogenesis, hep-ph/0609145 [SPIRES].

  10. G.F. Giudice and M.E. Shaposhnikov, Strong sphalerons and electroweak baryogenesis, Phys. Lett. B 326 (1994) 118 [hep-ph/9311367] [SPIRES].

    ADS  Google Scholar 

  11. P. Huet and A. E. Nelson, Electroweak baryogenesis in supersymmetric models, Phys. Rev. D 53 (1996) 4578 [hep-ph/9506477] [SPIRES].

    ADS  Google Scholar 

  12. J.M. Cline, M. Joyce and K. Kainulainen, Supersymmetric electroweak baryogenesis in the WKB approximation, Phys. Lett. B 417 (1998) 79 [Erratum ibid. B 448 (1999) 321] [hep-ph/9708393] [SPIRES].

    ADS  Google Scholar 

  13. D.J.H. Chung, B. Garbrecht, M.J. Ramsey-Musolf and S. Tulin, Supergauge interactions and electroweak baryogenesis, JHEP 12 (2009) 067 [arXiv:0908.2187] [SPIRES].

    Article  ADS  Google Scholar 

  14. PHENIX collaboration, K. Adcox et al., Formation of dense partonic matter in relativistic nucleus nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration, Nucl. Phys. A 757 (2005) 184 [nucl-ex/0410003] [SPIRES].

    ADS  Google Scholar 

  15. B.B. Back et al., The PHOBOS perspective on discoveries at RHIC, Nucl. Phys. A 757 (2005) 28 [nucl-ex/0410022] [SPIRES].

    ADS  Google Scholar 

  16. BRAHMS collaboration, I. Arsene et al., Quark Gluon Plasma an Color Glass Condensate at RHIC? The perspective from the BRAHMS experiment, Nucl. Phys. A 757 (2005) 1 [nucl-ex/0410020] [SPIRES].

    ADS  Google Scholar 

  17. STAR collaboration, J. Adams et al., Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR collaboration’s critical assessment of the evidence from RHIC collisions, Nucl. Phys. A 757 (2005) 102 [nucl-ex/0501009] [SPIRES].

    ADS  Google Scholar 

  18. D.E. Kharzeev, L.D. McLerran and H.J. Warringa, The effects of topological charge change in heavy ion collisions: ‘Event by event P and CP-violation’, Nucl. Phys. A 803 (2008) 227 [arXiv:0711.0950] [SPIRES].

    ADS  Google Scholar 

  19. K. Fukushima, D.E. Kharzeev and H.J. Warringa, The Chiral Magnetic Effect, Phys. Rev. D 78 (2008) 074033 [arXiv:0808.3382] [SPIRES].

    ADS  Google Scholar 

  20. STAR collaboration, B.I. Abelev et al., Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions, Phys. Rev. C 81 (2010) 054908 [arXiv:0909.1717] [SPIRES].

    ADS  Google Scholar 

  21. S.A. Voloshin, Testing the Chiral Magnetic Effect with Central U + U collisions, Phys. Rev. Lett. 105 (2010) 172301 [arXiv:1006.1020] [SPIRES].

    Article  ADS  Google Scholar 

  22. P.B. Arnold and L.D. McLerran, The Sphaleron Strikes Back, Phys. Rev. D 37 (1988) 1020 [SPIRES].

    ADS  Google Scholar 

  23. J. Ambjørn, T. Askgaard, H. Porter and M.E. Shaposhnikov, Sphaleron transitions and baryon asymmetry: A Numerical real time analysis, Nucl. Phys. B 353 (1991) 346 [SPIRES].

    Article  ADS  Google Scholar 

  24. D. Bödeker, L.D. McLerran and A.V. Smilga, Really computing nonperturbative real time correlation functions, Phys. Rev. D 52 (1995) 4675 [hep-th/9504123] [SPIRES].

    ADS  Google Scholar 

  25. J. Ambjørn and A. Krasnitz, The classical sphaleron transition rate exists and is equal to 1.1(α w T)4, Phys. Lett. B 362 (1995) 97 [hep-ph/9508202] [SPIRES].

    ADS  Google Scholar 

  26. J. Ambjørn and A. Krasnitz, Improved determination of the classical sphaleron transition rate, Nucl. Phys. B 506 (1997) 387 [hep-ph/9705380] [SPIRES].

    Article  ADS  Google Scholar 

  27. G.D. Moore and N. Turok, Lattice Chern-Simons number without ultraviolet problems, Phys. Rev. D 56 (1997) 6533 [hep-ph/9703266] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  28. G.D. Moore, C.-r. Hu and B. Müller, Chern-Simons number diffusion with hard thermal loops, Phys. Rev. D 58 (1998) 045001 [hep-ph/9710436] [SPIRES].

    ADS  Google Scholar 

  29. P.B. Arnold, D. Son and L.G. Yaffe, The hot baryon violation rate is O(α w 5 T 4 ), Phys. Rev. D 55 (1997) 6264 [hep-ph/9609481] [SPIRES].

    ADS  Google Scholar 

  30. D. Bödeker, On theeffective dynamics of soft non-abelian gauge fields at finite temperature, Phys. Lett. B 426 (1998) 351 [hep-ph/9801430] [SPIRES].

    ADS  Google Scholar 

  31. P.B. Arnold, D.T. Son and L.G. Yaffe, Hot B violation, color conductivity and log(1) effects, Phys. Rev. D 59 (1999) 105020 [hep-ph/9810216] [SPIRES].

    ADS  Google Scholar 

  32. D. Bödeker, G.D. Moore and K. Rummukainen, Chern-Simons number diffusion and hard thermal loops on the lattice, Phys. Rev. D 61 (2000) 056003 [hep-ph/9907545] [SPIRES].

    ADS  Google Scholar 

  33. G.D. Moore, The sphaleron rate: Boedeker’s leading log, Nucl. Phys. B 568 (2000) 367 [hep-ph/9810313] [SPIRES].

    Article  ADS  Google Scholar 

  34. P.B. Arnold and L.G. Yaffe, Non-perturbative dynamics of hot non-Abelian gauge fields: Beyond leading log approximation, Phys. Rev. D 62 (2000) 125013 [hep-ph/9912305] [SPIRES].

    ADS  Google Scholar 

  35. P.B. Arnold and L.G. Yaffe, High temperature color conductivity at next-to-leading log order, Phys. Rev. D 62 (2000) 125014 [hep-ph/9912306] [SPIRES].

    ADS  Google Scholar 

  36. G.D. Moore, Do we understand the sphaleron rate?, hep-ph/0009161 [SPIRES].

  37. G.D. Moore, Computing the strong sphaleron rate, Phys. Lett. B 412 (1997) 359 [hep-ph/9705248] [SPIRES].

    ADS  Google Scholar 

  38. P.B. Arnold, Hot B violation, the lattice and hard thermal loops, Phys. Rev. D 55 (1997) 7781 [hep-ph/9701393] [SPIRES].

    ADS  Google Scholar 

  39. The MILC collaboration, A. Bazavov et al., Results from the MILC collaboration’s SU(3) chiral perturbation theory analysis, PoS(LAT2009)079 [arXiv:0910.3618] [SPIRES].

  40. S.Y. Khlebnikov and M.E. Shaposhnikov, The Statistical Theory of Anomalous Fermion Number Nonconservation, Nucl. Phys. B 308 (1988) 885 [SPIRES].

    Article  ADS  Google Scholar 

  41. D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  42. H.B. Meyer, Transport properties of the quark-gluon plasma from lattice QCD, Nucl. Phys. A 830 (2009) 641c [arXiv:0907.4095] [SPIRES].

    ADS  Google Scholar 

  43. G.D. Moore, Motion of Chern-Simons Number at High Temperatures under a Chemical Potential, Nucl. Phys. B 480 (1996) 657 [hep-ph/9603384] [SPIRES].

  44. M. Lüscher, Topology of Lattice Gauge Fields, Commun. Math. Phys. 85 (1982) 39 [SPIRES].

    Article  ADS  MATH  Google Scholar 

  45. P. Woit, Topological Charge in Lattice Gauge Theory, Phys. Rev. Lett. 51 (1983) 638 [SPIRES].

    Article  ADS  Google Scholar 

  46. P. Woit, Topology and Lattice Gauge Fields, Nucl. Phys. B 262 (1985) 284 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  47. A. Phillips and D. Stone, Lattice Gauge Fields, Principal Bundles and the Calculation of Topological Charge, Commun. Math. Phys. 103 (1986) 599 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. D.Y. Grigoriev, V.A. Rubakov and M.E. Shaposhnikov, Sphaleron Transitions at Finite Temperatures: Numerical Study in (1+1)-Dimensions, Phys. Lett. B 216 (1989) 172 [SPIRES].

    ADS  Google Scholar 

  49. D. Bödeker, Classical real time correlation functions and quantum corrections at finite temperature, Nucl. Phys. B 486 (1997) 500 [hep-th/9609170] [SPIRES].

    Article  ADS  Google Scholar 

  50. E. Braaten and R.D. Pisarski, Soft Amplitudes in Hot Gauge Theories: A General Analysis, Nucl. Phys. B 337 (1990) 569 [SPIRES].

    Article  ADS  Google Scholar 

  51. J. Frenkel and J.C. Taylor, High Temperature Limit of Thermal QCD, Nucl. Phys. B 334 (1990) 199 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  52. G.D. Moore, Measuring the broken phase sphaleron rate nonperturbatively, Phys. Rev. D 59 (1999) 014503 [hep-ph/9805264] [SPIRES].

    ADS  Google Scholar 

  53. G.D. Moore, O(a) errors in 3 − D SU(N) Higgs theories, Nucl. Phys. B 523 (1998) 569 [hep-lat/9709053] [SPIRES].

    Article  ADS  Google Scholar 

  54. M. Laine, G.D. Moore, O. Philipsen and M. Tassler, Heavy Quark Thermalization in Classical Lattice Gauge Theory: Lessons for Strongly-Coupled QCD, JHEP 05 (2009) 014 [arXiv:0902.2856] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy D. Moore.

Additional information

ArXiv ePrint: 1011.1167

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, G.D., Tassler, M. The sphaleron rate in SU(N) gauge theory. J. High Energ. Phys. 2011, 105 (2011). https://doi.org/10.1007/JHEP02(2011)105

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2011)105

Keywords

Navigation