Skip to main content
Log in

The vector form factor at the next-to-leading order in 1/N C : chiral couplings L9(μ) and C88(μ) − C90(μ)

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Using the Resonance Chiral Theory Lagrangian, we perform a calculation of the vector form factor of the pion at the next-to-leading order (NLO) in the 1/N C expansion. Imposing the correct QCD short-distance constraints, one fixes the amplitude in terms of the pion decay constant F and resonance masses. Its low momentum expansion determines then the corresponding \( \mathcal{O}\left( {{p^4}} \right) \) and \( \mathcal{O}\left( {{p^6}} \right) \) low-energy chiral couplings at NLO, keeping control of their renormalization scale dependence. At μ 0 = 0.77 GeV, we obtain L 9(μ 0) = (7.9 ± 0.4) ∙ 10−3 and C 88(μ 0) − C 90(μ 0) = (−4.6 ± 0.4) ∙ 10−5 .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327 [SPIRES].

    ADS  Google Scholar 

  2. J. Gasser and H. Leutwyler, Chiral perturbation theory to one loop, Ann. Phys. 158 (1984) 142 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. J. Gasser and H. Leutwyler, Chiral perturbation theory: expansions in the mass of the strange quark, Nucl. Phys. B 250 (1985) 465 [SPIRES].

    Article  ADS  Google Scholar 

  4. J. Gasser and H. Leutwyler, Low-energy expansion of meson form-factors, Nucl. Phys. B 250 (1985) 517 [SPIRES].

    Article  ADS  Google Scholar 

  5. J. Bijnens, G. Colangelo and G. Ecker, The mesonic chiral Lagrangian of order p 6, JHEP 02 (1999) 020 [hep-ph/9902437] [SPIRES].

    Article  ADS  Google Scholar 

  6. J. Bijnens, G. Colangelo and G. Ecker, Renormalization of chiral perturbation theory to order p 6, Annals Phys. 280 (2000) 100 [hep-ph/9907333] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72 (1974) 461 [SPIRES].

    Article  ADS  Google Scholar 

  8. G. ’t Hooft, A two-dimensional model for mesons, Nucl. Phys. B 75 (1974) 461 [SPIRES].

    Article  ADS  Google Scholar 

  9. E. Witten, Baryons in the 1/N expansion, Nucl. Phys. B 160 (1979) 57 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. M. Knecht and E. de Rafael, Patterns of spontaneous chiral symmetry breaking in the large-N c limit of QCD-like theories, Phys. Lett. B 424 (1998) 335 [hep-ph/9712457] [SPIRES].

    ADS  Google Scholar 

  11. S. Peris, M. Perrottet and E. de Rafael, Matching long and short distances in large-N c QCD, JHEP 05 (1998) 011 [hep-ph/9805442] [SPIRES].

    Article  ADS  Google Scholar 

  12. M. Golterman and S. Peris, Large-N c QCD meets Regge theory: the example of spin-one two-point functions, JHEP 01 (2001) 028 [hep-ph/0101098] [SPIRES].

    Article  ADS  Google Scholar 

  13. A. Pich, Low-energy constants from resonance chiral theory, PoS(CONFINEMENT8)026 [arXiv:0812.2631] [SPIRES].

  14. G. Ecker, J. Gasser, A. Pich and E. de Rafael, The role of resonances in chiral perturbation theory, Nucl. Phys. B 321 (1989) 311 [SPIRES].

    Article  ADS  Google Scholar 

  15. G. Ecker, J. Gasser, H. Leutwyler, A. Pich and E. de Rafael, Chiral Lagrangians for massive spin 1 fields, Phys. Lett. B 223 (1989) 425 [SPIRES].

    ADS  Google Scholar 

  16. V. Cirigliano et al., Towards a consistent estimate of the chiral low-energy constants, Nucl. Phys. B 753 (2006) 139 [hep-ph/0603205] [SPIRES].

    Article  ADS  Google Scholar 

  17. O. Catà and S. Peris, An example of resonance saturation at one loop, Phys. Rev. D 65 (2002) 056014 [hep-ph/0107062] [SPIRES].

    ADS  Google Scholar 

  18. I. Rosell, J.J. Sanz-Cillero and A. Pich, Quantum loops in the resonance chiral theory: the vector form factor, JHEP 08 (2004) 042 [hep-ph/0407240] [SPIRES].

    Article  ADS  Google Scholar 

  19. I. Rosell, P. Ruiz-Femenia and J. Portoles, One-loop renormalization of resonance chiral theory: scalar and pseudoscalar resonances, JHEP 12 (2005) 020 [hep-ph/0510041] [SPIRES].

    Article  ADS  Google Scholar 

  20. J.J. Sanz-Cillero, On the structure of two-point Green functions at next-to-leading order in 1/N C , Phys. Lett. B 649 (2007) 180 [hep-ph/0702217] [SPIRES].

    ADS  Google Scholar 

  21. L.Y. Xiao and J.J. Sanz-Cillero, Renormalizable sectors in resonance chiral theory: Sππ decay amplitude, Phys. Lett. B 659 (2008) 452 [arXiv:0705.3899] [SPIRES].

    ADS  Google Scholar 

  22. J. Portoles, I. Rosell and P. Ruiz-Femenia, Vanishing chiral couplings in the large-N c resonance theory, Phys. Rev. D 75 (2007) 114011 [hep-ph/0611375] [SPIRES].

    ADS  Google Scholar 

  23. I. Rosell, P. Ruiz-Femenia and J.J. Sanz-Cillero, Resonance saturation of the chiral couplings at NLO in 1/N C , Phys. Rev. D 79 (2009) 076009 [arXiv:0903.2440] [SPIRES].

    ADS  Google Scholar 

  24. I. Rosell, Quantum corrections in the resonance chiral theory, hep-ph/0701248 [SPIRES].

  25. K. Kampf, J. Novotny and J. Trnka, Renormalization and additional degrees of freedom within the chiral effective theory for spin-1 resonances, Phys. Rev. D 81 (2010) 116004 [arXiv:0912.5289] [SPIRES].

    ADS  Google Scholar 

  26. I. Rosell, J.J. Sanz-Cillero and A. Pich, Towards a determination of the chiral couplings at NLO in 1/N C :L 8 r(μ) and C 38 r(μ), JHEP 01 (2007) 039 [hep-ph/0610290] [SPIRES].

    Article  ADS  Google Scholar 

  27. A. Pich, I. Rosell and J.J. Sanz-Cillero, Form-factors and current correlators: chiral couplings L 10(μ) and C 87(μ) at NLO in 1/N C , JHEP 07 (2008) 014 [arXiv:0803.1567] [SPIRES].

    Article  ADS  Google Scholar 

  28. J.J. Sanz-Cillero and J. Trnka, High energy constraints in the octet SS-PP correlator and resonance saturation at NLO in 1/N C , Phys. Rev. D 81 (2010) 056005 [arXiv:0912.0495] [SPIRES].

    ADS  Google Scholar 

  29. J. Bijnens, E. Gamiz, E. Lipartia and J. Prades, QCD short-distance constraints and hadronic approximations, JHEP 04 (2003) 055 [hep-ph/0304222] [SPIRES].

    Article  ADS  Google Scholar 

  30. S. Peris, Large-N C QCD and Pade approximant theory, Phys. Rev. D 74 (2006) 054013 [hep-ph/0603190] [SPIRES].

    ADS  Google Scholar 

  31. P. Masjuan and S. Peris, A rational approach to resonance saturation in large-N C QCD, JHEP 05 (2007) 040 [arXiv:0704.1247] [SPIRES].

    Article  ADS  Google Scholar 

  32. M. Golterman, S. Peris, B. Phily and E. De Rafael, Testing an approximation to large-N C QCD with a toy model, JHEP 01 (2002) 024 [hep-ph/0112042] [SPIRES].

    Article  ADS  Google Scholar 

  33. J.J. Sanz-Cillero, Spin-1 correlators at large-N C : matching OPE and resonance theory up to \( \mathcal{O}\left( {{\alpha_s}} \right) \), Nucl. Phys. B 732 (2006) 136 [hep-ph/0507186] [SPIRES].

    Article  ADS  Google Scholar 

  34. M. Golterman and S. Peris, On the relation between low-energy constants and resonance saturation, Phys. Rev. D 74 (2006) 096002 [hep-ph/0607152] [SPIRES].

    ADS  Google Scholar 

  35. S. Weinberg, Precise relations between the spectra of vector and axial vector mesons, Phys. Rev. Lett. 18 (1967) 507 [SPIRES].

    Article  ADS  Google Scholar 

  36. M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, QCD and resonance physics. Sum rules, Nucl. Phys. B 147 (1979) 385 [SPIRES].

    Article  ADS  Google Scholar 

  37. J. Bijnens, G. Colangelo and P. Talavera, The vector and scalar form factors of the pion to two loops, JHEP 05 (1998) 014 [hep-ph/9805389] [SPIRES].

    ADS  Google Scholar 

  38. J. Bijnens and P. Talavera, Pion and kaon electromagnetic form factors, JHEP 03 (2002) 046 [hep-ph/0203049] [SPIRES].

    Article  ADS  Google Scholar 

  39. F. Guerrero and A. Pich, Effective field theory description of the pion form factor, Phys. Lett. B 412 (1997) 382 [hep-ph/9707347] [SPIRES].

    ADS  Google Scholar 

  40. D. Gomez Dumm, A. Pich and J. Portoles, The hadronic off-shell width of meson resonances, Phys. Rev. D 62 (2000) 054014 [hep-ph/0003320] [SPIRES].

    ADS  Google Scholar 

  41. D. Gomez Dumm, A. Pich and J. Portoles, τ → (3π)ν τ decays in the resonance effective theory, Phys. Rev. D 69 (2004) 073002 [hep-ph/0312183] [SPIRES].

    ADS  Google Scholar 

  42. J.A. Oller, E. Oset and J.E. Palomar, Pion and kaon vector form factors, Phys. Rev. D 63 (2001) 114009 [hep-ph/0011096] [SPIRES].

    ADS  Google Scholar 

  43. A. Pich and J. Portoles, The vector form factor of the pion from unitarity and analyticity: a model-independent approach, Phys. Rev. D 63 (2001) 093005 [hep-ph/0101194] [SPIRES].

    ADS  Google Scholar 

  44. J.J. Sanz-Cillero, Renormalization group equations in resonance chiral theory, Phys. Lett. B 681 (2009) 100 [arXiv:0905.3676] [SPIRES].

    ADS  Google Scholar 

  45. J.J. Sanz-Cillero and A. Pich, Rho meson properties in the chiral theory framework, Eur. Phys. J. C 27 (2003) 587 [hep-ph/0208199] [SPIRES].

    ADS  Google Scholar 

  46. G.P. Lepage and S.J. Brodsky, Exclusive processes in quantum chromodynamics: evolution equations for hadronic wave functions and the form-factors of mesons, Phys. Lett. B 87 (1979) 359 [SPIRES].

    ADS  Google Scholar 

  47. G.P. Lepage and S.J. Brodsky, Exclusive processes in perturbative quantum chromodynamics, Phys. Rev. D 22 (1980) 2157 [SPIRES].

    ADS  Google Scholar 

  48. Z.H. Guo, J.J. Sanz Cillero and H.Q. Zheng, Partial waves and large-N C resonance sum rules, JHEP 06 (2007) 030 [hep-ph/0701232] [SPIRES].

    Article  ADS  Google Scholar 

  49. Z.-H. Guo and P. Roig, One meson radiative tau decays, Phys. Rev. D 82 (2010) 113016 [arXiv:1009.2542] [SPIRES].

    ADS  Google Scholar 

  50. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [SPIRES].

    ADS  Google Scholar 

  51. V. Mateu and J. Portoles, Form factors in radiative pion decay, Eur. Phys. J. C 52 (2007) 325 [arXiv:0706.1039] [SPIRES].

    Article  ADS  Google Scholar 

  52. J.J. Sanz-Cillero, One loop predictions for the pion VFF in resonance chiral theory, AIP Conf. Proc. 1317 (2011) 116 [arXiv:1009.6012] [SPIRES].

    ADS  Google Scholar 

  53. M. Gonzalez-Alonso, A. Pich and J. Prades, Determination of the chiral couplings L 10 and C 87 from semileptonic tau decays, Phys. Rev. D 78 (2008) 116012 [arXiv:0810.0760] [SPIRES].

    ADS  Google Scholar 

  54. P. Masjuan, S. Peris and J.J. Sanz-Cillero, Vector meson dominance as a first stepin a systematic approximation: the pion vector form factor, Phys. Rev. D 78 (2008) 074028 [arXiv:0807.4893] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignasi Rosell.

Additional information

ArXiv ePrint : 1011.5771

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pich, A., Rosell, I. & José Sanz-Cillero, J. The vector form factor at the next-to-leading order in 1/N C : chiral couplings L9(μ) and C88(μ) − C90(μ). J. High Energ. Phys. 2011, 109 (2011). https://doi.org/10.1007/JHEP02(2011)109

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2011)109

Keywords

Navigation