Skip to main content
Log in

The QCD phase diagram for external magnetic fields

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The effect of an external (electro)magnetic field on the finite temperature transition of QCD is studied. We generate configurations at various values of the quantized magnetic flux with N f  = 2 + 1 flavors of stout smeared staggered quarks, with physical masses. Thermodynamic observables including the chiral condensate and susceptibility, and the strange quark number susceptibility are measured as functions of the field strength. We perform the renormalization of the studied observables and extrapolate the results to the continuum limit using N t  = 6, 8 and 10 lattices. We also check for finite volume effects using various lattice volumes. We find from all of our observables that the transition temperature T c significantly decreases with increasing magnetic field. This is in conflict with various model calculations that predict an increasing T c (B). From a finite volume scaling analysis we find that the analytic crossover that is present at B = 0 persists up to our largest magnetic fields eB ≈ 1 GeV2, and that the transition strength increases mildly up to this eB ≈ 1 GeV2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Vachaspati, Magnetic fields from cosmological phase transitions, Phys. Lett. B 265 (1991) 258 [INSPIRE].

    ADS  Google Scholar 

  2. R.C. Duncan and C. Thompson, Formation of very strongly magnetized neutron starsImplications for gamma-ray bursts, Astrophys. J. 392 (1992) L9 [INSPIRE].

    Article  ADS  Google Scholar 

  3. V. Skokov, A. Illarionov and V. Toneev, Estimate of the magnetic field strength in heavy-ion collisions, Int. J. Mod. Phys. A 24 (2009) 5925 [arXiv:0907.1396] [INSPIRE].

    ADS  Google Scholar 

  4. D.E. Kharzeev, L.D. McLerran and H.J. Warringa, The effects of topological charge change in heavy ion collisions:Event by event P and CP-violation’, Nucl. Phys. A 803 (2008) 227 [arXiv:0711.0950] [INSPIRE].

    ADS  Google Scholar 

  5. K. Fukushima, D.E. Kharzeev and H.J. Warringa, The chiral magnetic effect, Phys. Rev. D 78 (2008) 074033 [arXiv:0808.3382] [INSPIRE].

    ADS  Google Scholar 

  6. D. Kharzeev, Parity violation in hot QCD: Why it can happen and how to look for it, Phys. Lett. B 633 (2006) 260 [hep-ph/0406125] [INSPIRE].

    ADS  Google Scholar 

  7. STAR collaboration, S.A. Voloshin, Probe for the strong parity violation effects at RHIC with three particle correlations, Indian J. Phys. 85 (2011) 1103 [arXiv:0806.0029] [INSPIRE].

    Article  Google Scholar 

  8. STAR collaboration, B. Abelev et al., Azimuthal charged-particle correlations and possible local strong parity violation, Phys. Rev. Lett. 103 (2009) 251601 [arXiv:0909.1739] [INSPIRE].

    Article  ADS  Google Scholar 

  9. ALICE collaboration, I. Selyuzhenkov, Anisotropic flow and other collective phenomena measured in Pb-Pb collisions with ALICE at the LHC, arXiv:1111.1875 [INSPIRE].

  10. F. Wang, Effects of cluster particle correlations on local parity violation observables, Phys. Rev. C 81 (2010) 064902 [arXiv:0911.1482] [INSPIRE].

    ADS  Google Scholar 

  11. B. Müller and A. Schäfer, Charge fluctuations from the chiral magnetic effect in nuclear collisions, Phys. Rev. C 82 (2010) 057902 [arXiv:1009.1053] [INSPIRE].

    Google Scholar 

  12. V. Voronyuk et al., (Electro-)Magnetic field evolution in relativistic heavy-ion collisions, Phys. Rev. C 83 (2011) 054911 [arXiv:1103.4239] [INSPIRE].

    ADS  Google Scholar 

  13. A.J. Mizher, M. Chernodub and E.S. Fraga, Phase diagram of hot QCD in an external magnetic field: possible splitting of deconfinement and chiral transitions, Phys. Rev. D 82 (2010) 105016 [arXiv:1004.2712] [INSPIRE].

    ADS  Google Scholar 

  14. E.S. Fraga and A.J. Mizher, Can a strong magnetic background modify the nature of the chiral transition in QCD?, Nucl. Phys. A 820 (2009) 103 C-106 C [arXiv:0810.3693] [INSPIRE].

    ADS  Google Scholar 

  15. R. Gatto and M. Ruggieri, Deconfinement and chiral symmetry restoration in a strong magnetic background, Phys. Rev. D 83 (2011) 034016 [arXiv:1012.1291] [INSPIRE].

    ADS  Google Scholar 

  16. R. Gatto and M. Ruggieri, Dressed Polyakov loop and phase diagram of hot quark matter under magnetic field, Phys. Rev. D 82 (2010) 054027 [arXiv:1007.0790] [INSPIRE].

    ADS  Google Scholar 

  17. A. Osipov, B. Hiller, A. Blin and J. da Providencia, Dynamical chiral symmetry breaking by a magnetic field and multi-quark interactions, Phys. Lett. B 650 (2007) 262 [hep-ph/0701090] [INSPIRE].

    ADS  Google Scholar 

  18. K. Kashiwa, Entanglement between chiral and deconfinement transitions under strong uniform magnetic background field, Phys. Rev. D 83 (2011) 117901 [arXiv:1104.5167] [INSPIRE].

    Google Scholar 

  19. C.V. Johnson and A. Kundu, External fields and chiral symmetry breaking in the Sakai-Sugimoto model, JHEP 12 (2008) 053 [arXiv:0803.0038] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. S. Kanemura, H.-T. Sato and H. Tochimura, Thermodynamic Gross-Neveu model under constant electromagnetic field, Nucl. Phys. B 517 (1998) 567 [hep-ph/9707285] [INSPIRE].

    Article  ADS  Google Scholar 

  21. K. Klimenko, Three-dimensional Gross-Neveu model at nonzero temperature and in an external magnetic field, Theor. Math. Phys. 90 (1992) 1 [INSPIRE].

    Article  MathSciNet  Google Scholar 

  22. J. Alexandre, K. Farakos and G. Koutsoumbas, Magnetic catalysis in QED(3) at finite temperature: beyond the constant mass approximation, Phys. Rev. D 63 (2001) 065015 [hep-th/0010211] [INSPIRE].

    ADS  Google Scholar 

  23. N. Evans, T. Kalaydzhyan, K.-y. Kim and I. Kirsch, Non-equilibrium physics at a holographic chiral phase transition, JHEP 01 (2011) 050 [arXiv:1011.2519] [INSPIRE].

    Article  ADS  Google Scholar 

  24. N. Agasian and S. Fedorov, Quark-hadron phase transition in a magnetic field, Phys. Lett. B 663 (2008) 445 [arXiv:0803.3156] [INSPIRE].

    ADS  Google Scholar 

  25. F. Preis, A. Rebhan and A. Schmitt, Inverse magnetic catalysis in dense holographic matter, JHEP 03 (2011) 033 [arXiv:1012.4785] [INSPIRE].

    Article  ADS  Google Scholar 

  26. P. Cea and L. Cosmai, Color dynamics in external fields, JHEP 08 (2005) 079 [hep-lat/0505007] [INSPIRE].

    Article  ADS  Google Scholar 

  27. P. Cea and L. Cosmai, Abelian chromomagnetic fields and confinement, JHEP 02 (2003) 031 [hep-lat/0204023] [INSPIRE].

    Article  ADS  Google Scholar 

  28. P. Cea, L. Cosmai and M. D’Elia, QCD dynamics in a constant chromomagnetic field, JHEP 12 (2007) 097 [arXiv:0707.1149] [INSPIRE].

    Article  ADS  Google Scholar 

  29. V. Gusynin, V. Miransky and I. Shovkovy, Dimensional reduction and catalysis of dynamical symmetry breaking by a magnetic field, Nucl. Phys. B 462 (1996) 249 [hep-ph/9509320] [INSPIRE].

    Article  ADS  Google Scholar 

  30. S.-i. Nam and C.-W. Kao, Chiral restoration at finite T under the magnetic field with the meson-loop corrections, Phys. Rev. D 83 (2011) 096009 [arXiv:1103.6057] [INSPIRE].

    ADS  Google Scholar 

  31. J.K. Boomsma and D. Boer, The influence of strong magnetic fields and instantons on the phase structure of the two-flavor NJLS model, Phys. Rev. D 81 (2010) 074005 [arXiv:0911.2164] [INSPIRE].

    ADS  Google Scholar 

  32. I. Shushpanov and A.V. Smilga, Quark condensate in a magnetic field, Phys. Lett. B 402 (1997) 351 [hep-ph/9703201] [INSPIRE].

    ADS  Google Scholar 

  33. T.D. Cohen, D.A. McGady and E.S. Werbos, The chiral condensate in a constant electromagnetic field, Phys. Rev. C 76 (2007) 055201 [arXiv:0706.3208] [INSPIRE].

    ADS  Google Scholar 

  34. N.O. Agasian, Chiral thermodynamics in a magnetic field, Phys. Atom. Nucl. 64 (2001) 554 [hep-ph/0112341] [INSPIRE].

    Article  ADS  Google Scholar 

  35. A. Zayakin, QCD vacuum properties in a magnetic field from AdS/CFT: chiral condensate and Goldstone mass, JHEP 07 (2008) 116 [arXiv:0807.2917] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. V. Miransky and I. Shovkovy, Magnetic catalysis and anisotropic confinement in QCD, Phys. Rev. D 66 (2002) 045006 [hep-ph/0205348] [INSPIRE].

    ADS  Google Scholar 

  37. M. D’Elia, S. Mukherjee and F. Sanfilippo, QCD phase transition in a strong magnetic background, Phys. Rev. D 82 (2010) 051501 [arXiv:1005.5365] [INSPIRE].

    ADS  Google Scholar 

  38. G. ’t Hooft, A property of electric and magnetic flux in nonabelian gauge theories, Nucl. Phys. B 153 (1979) 141 [INSPIRE].

    Article  ADS  Google Scholar 

  39. M. Al-Hashimi and U.-J. Wiese, Discrete accidental symmetry for a particle in a constant magnetic field on a torus, Annals Phys. 324 (2009) 343 [arXiv:0807.0630] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. G. Martinelli, G. Parisi, R. Petronzio and F. Rapuano, The proton and neutron magnetic moments in lattice QCD, Phys. Lett. B 116 (1982) 434 [INSPIRE].

    ADS  Google Scholar 

  41. C.W. Bernard, T. Draper, K. Olynyk and M. Rushton, Lattice QCD calculation of some baryon magnetic moments, Phys. Rev. Lett. 49 (1982) 1076 [INSPIRE].

    Article  ADS  Google Scholar 

  42. L. Zhou, F. Lee, W. Wilcox and J.C. Christensen, Magnetic polarizability of hadrons from lattice QCD, Nucl. Phys. Proc. Suppl. 119 (2003) 272 [hep-lat/0209128] [INSPIRE].

    Article  ADS  Google Scholar 

  43. D.S. Roberts, P.O. Bowman, W. Kamleh and D.B. Leinweber, Wave functions of the proton ground state in the presence of a uniform background magnetic field in lattice QCD, Phys. Rev. D 83 (2011) 094504 [arXiv:1011.1975] [INSPIRE].

    ADS  Google Scholar 

  44. M. D’Elia and F. Negro, Chiral properties of strong interactions in a magnetic background, Phys. Rev. D 83 (2011) 114028 [arXiv:1103.2080] [INSPIRE].

    ADS  Google Scholar 

  45. F. Bruckmann and G. Endrődi, Dressed Wilson loops as dual condensates in response to magnetic and electric fields, Phys. Rev. D 84 (2011) 074506 [arXiv:1104.5664] [INSPIRE].

    ADS  Google Scholar 

  46. S. Dürr, Theoretical issues with staggered fermion simulations, PoS(LAT2005)021 [hep-lat/0509026] [INSPIRE].

  47. H. Leutwyler and A.V. Smilga, Spectrum of Dirac operator and role of winding number in QCD, Phys. Rev. D 46 (1992) 5607 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  48. G. Endrődi, Z. Fodor, S. Katz and K. Szabó, The QCD phase diagram at nonzero quark density, JHEP 04 (2011) 001 [arXiv:1102.1356] [INSPIRE].

    Article  ADS  Google Scholar 

  49. A. Salam and J. Strathdee, Transition electromagnetic fields in particle physics, Nucl. Phys. B 90 (1975) 203 .

    Article  MathSciNet  ADS  Google Scholar 

  50. M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Addison Wesley, Reading U.S.A. (1995).

    Google Scholar 

  51. Y. Aoki et al., The QCD transition temperature: results with physical masses in the continuum limit II, JHEP 06 (2009) 088 [arXiv:0903.4155] [INSPIRE].

    Article  ADS  Google Scholar 

  52. M. Chernodub, Superconductivity of QCD vacuum in strong magnetic field, Phys. Rev. D 82 (2010) 085011 [arXiv:1008.1055] [INSPIRE].

    ADS  Google Scholar 

  53. Y. Aoki, Z. Fodor, S. Katz and K. Szabó, The equation of state in lattice QCD: with physical quark masses towards the continuum limit, JHEP 01 (2006) 089 [hep-lat/0510084] [INSPIRE].

    Article  ADS  Google Scholar 

  54. S. Borsányi et al., The QCD equation of state with dynamical quarks, JHEP 11 (2010) 077 [arXiv:1007.2580] [INSPIRE].

    Article  ADS  Google Scholar 

  55. N. Ishizuka, M. Fukugita, H. Mino, M. Okawa and A. Ukawa, Operator dependence of hadron masses for Kogut-Susskind quarks on the lattice, Nucl. Phys. B 411 (1994) 875 [INSPIRE].

    Article  ADS  Google Scholar 

  56. G. Endrődi, Multidimensional spline integration of scattered data, Comput. Phys. Commun. 182 (2011) 1307 [arXiv:1010.2952] [INSPIRE].

    Article  ADS  Google Scholar 

  57. F. Karsch, E. Laermann and A. Peikert, Quark mass and flavor dependence of the QCD phase transition, Nucl. Phys. B 605 (2001) 579 [hep-lat/0012023] [INSPIRE].

    Article  ADS  Google Scholar 

  58. Y. Aoki, G. Endrődi, Z. Fodor, S. Katz and K. Szabó, The order of the quantum chromodynamics transition predicted by the standard model of particle physics, Nature 443 (2006) 675 [hep-lat/0611014] [INSPIRE].

    Article  ADS  Google Scholar 

  59. Y. Aoki, Z. Fodor, S. Katz and K. Szabó, The QCD transition temperature: results with physical masses in the continuum limit, Phys. Lett. B 643 (2006) 46 [hep-lat/0609068] [INSPIRE].

    ADS  Google Scholar 

  60. Wuppertal-Budapest collaboration, S. Borsányi et al., Is there still any T c mystery in lattice QCD? Results with physical masses in the continuum limit III, JHEP 09 (2010) 073 [arXiv:1005.3508] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Endrődi.

Additional information

ArXiv ePrint: 1111.4956

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bali, G.S., Bruckmann, F., Endrődi, G. et al. The QCD phase diagram for external magnetic fields. J. High Energ. Phys. 2012, 44 (2012). https://doi.org/10.1007/JHEP02(2012)044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2012)044

Keywords

Navigation