Skip to main content
Log in

Effective field theory in time-dependent settings

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We use the in-in or Schwinger-Keldysh formalism to explore the construction and interpretation of effective field theories for time-dependent systems evolving out of equilibrium. Starting with a simple model consisting of a heavy and a light scalar field taken to be in their free vacuum states at a finite initial time, we study the effects from the heavy field on the dynamics of the light field by analyzing the equation of motion for the expectation value of the light background field. New terms appear which cannot arise from a local action of an effective field theory in terms of the light field, though they disappear in the adiabatic limit. We discuss the origins of these terms as well as their possible implications for time dependent situations such as inflation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Georgi, Effective field theory, Ann. Rev. Nucl. Part. Sci. 43 (1993) 209 [INSPIRE].

    Article  ADS  Google Scholar 

  2. I.Z. Rothstein, TASI lectures on effective field theories, hep-ph/0308266 [INSPIRE].

  3. C. Burgess, Introduction to effective field theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 329 [hep-th/0701053] [INSPIRE].

    Article  ADS  Google Scholar 

  4. T. Appelquist and J. Carazzone, Infrared singularities and massive fields, Phys. Rev. D 11 (1975) 2856 [INSPIRE].

    ADS  Google Scholar 

  5. E. Witten, Quantum gravity in de Sitter space, hep-th/0106109 [INSPIRE].

  6. J.S. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys. 2 (1961) 407 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. L. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz. 47 (1964) 1515 [Sov. Phys. JETP 20 (1965) 1018] [INSPIRE].

    Google Scholar 

  8. K.T. Mahanthappa, Multiple production of photons in quantum electrodynamics, Phys. Rev. 126 (1962) 329 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. P.M. Bakshi and K.T. Mahanthappa, Expectation value formalism in quantum field theory. 1, J. Math. Phys. 4 (1963) 1 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. P.M. Bakshi and K.T. Mahanthappa, Expectation value formalism in quantum field theory. 2, J. Math. Phys. 4 (1963) 12 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. A. Kamenev, Many-body theory of non-equilibrium systems, cond-mat/0412296.

  12. D. Boyanovsky, H. de Vega, R. Holman, D. Lee and A. Singh, Dissipation via particle production in scalar field theories, Phys. Rev. D 51 (1995) 4419 [hep-ph/9408214] [INSPIRE].

    ADS  Google Scholar 

  13. S. Weinberg, Perturbative calculations of symmetry breaking, Phys. Rev. D 7 (1973) 2887 [INSPIRE].

    ADS  Google Scholar 

  14. D. Boyanovsky and H. de Vega, Dynamical renormalization group approach to relaxation in quantum field theory, Annals Phys. 307 (2003) 335 [hep-ph/0302055] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  15. H. Collins, R. Holman and A. Ross, in progress.

  16. R. Feynman and F.L. Vernon Jr., The theory of a general quantum system interacting with a linear dissipative system, Annals Phys. 24 (1963) 118 [Annals Phys. 281 (2000) 547] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. S. Weinberg, Quantum contributions to cosmological correlations, Phys. Rev. D 72 (2005) 043514 [hep-th/0506236] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. S. Weinberg, Effective field theory for inflation, Phys. Rev. D 77 (2008) 123541 [arXiv:0804.4291] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  19. C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, The effective field theory of inflation, JHEP 03 (2008) 014 [arXiv:0709.0293] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. L. Senatore and M. Zaldarriaga, On loops in inflation, JHEP 12 (2010) 008 [arXiv:0912.2734] [INSPIRE].

    Article  ADS  Google Scholar 

  21. A. Achucarro, J.-O. Gong, S. Hardeman, G.A. Palma and S.P. Patil, Effective theories of single field inflation when heavy fields matter, JHEP 05 (2012) 066 [arXiv:1201.6342] [INSPIRE].

    Article  ADS  Google Scholar 

  22. A. Achucarro, J.-O. Gong, S. Hardeman, G.A. Palma and S.P. Patil, Features of heavy physics in the CMB power spectrum, JCAP 01 (2011) 030 [arXiv:1010.3693] [INSPIRE].

    Article  ADS  Google Scholar 

  23. G. Shiu and J. Xu, Effective field theory and decoupling in multi-field inflation: an illustrative case study, Phys. Rev. D 84 (2011) 103509 [arXiv:1108.0981] [INSPIRE].

    ADS  Google Scholar 

  24. A. Avgoustidis et al., Decoupling survives inflation: a critical look at effective field theory violations during inflation, JCAP 06 (2012) 025 [arXiv:1203.0016] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hael Collins.

Additional information

ArXiv ePrint: 1208.3255

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collins, H., Holman, R. & Ross, A. Effective field theory in time-dependent settings. J. High Energ. Phys. 2013, 108 (2013). https://doi.org/10.1007/JHEP02(2013)108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2013)108

Keywords

Navigation