Skip to main content
Log in

Yukawa hierarchies from spontaneous breaking of the SU(3) L × SU(3) R flavour symmetry?

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The tree level potential for a scalar multiplet of ‘Yukawa fields’ Y for one type of quarks admits the promising vacuum configuration 〈Y〉 ∝ diag(0, 0, 1) that breaks spontaneously SU(3) L × SU(3) R flavour symmetry. We investigate whether the vanishing entries could be lifted to nonvanishing values by slightly perturbing the potential, thus providing a mechanism to generate the Yukawa hierarchies. For theories where at the lowest order the only massless states are Nambu-Goldstone bosons we find, as a general result, that the structure of the tree-level vacuum is perturbatively stable against corrections from scalar loops or higher dimensional operators. We discuss the reasons for this stability, and give an explicit illustration in the case of loop corrections by direct computation of the one-loop effective potential of Yukawa fields. Nevertheless, a hierarchical configuration 〈Y 〉 ∝ diag(ϵ′, ϵ, 1) (with ϵ′, ϵ ≪ 1) can be generated by enlarging the scalar Yukawa sector. We present a simple model in which spontaneous breaking of the flavour symmetry can give rise to the fermion mass hierarchies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Froggatt and H.B. Nielsen, Hierarchy of quark masses, Cabibbo angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].

    Article  ADS  Google Scholar 

  2. R.S. Chivukula and H. Georgi, Composite technicolor standard model, Phys. Lett. B 188 (1987) 99 [INSPIRE].

    Article  ADS  Google Scholar 

  3. A. Anselm and Z. Berezhiani, Weak mixing angles as dynamical degrees of freedom, Nucl. Phys. B 484 (1997) 97 [hep-ph/9605400] [INSPIRE].

    Article  ADS  Google Scholar 

  4. Z. Berezhiani and A. Rossi, Flavor structure, flavor symmetry and supersymmetry, Nucl. Phys. Proc. Suppl. 101 (2001) 410 [hep-ph/0107054] [INSPIRE].

    Article  ADS  Google Scholar 

  5. Y. Koide, Phenomenological meaning of a neutrino mass matrix related to up-quark masses, Phys. Rev. D 78 (2008) 093006 [arXiv:0809.2449] [INSPIRE].

    ADS  Google Scholar 

  6. Y. Koide, Charged lepton mass relations in a supersymmetric yukawaon model, Phys. Rev. D 79 (2009) 033009 [arXiv:0811.3470] [INSPIRE].

    ADS  Google Scholar 

  7. Y. Koide and H. Nishiura, Yukawaon model with U(3) × S 3 family symmetries, Phys. Lett. B 712 (2012) 396 [arXiv:1202.5815] [INSPIRE].

    Article  ADS  Google Scholar 

  8. T. Feldmann, M. Jung and T. Mannel, Sequential flavour symmetry breaking, Phys. Rev. D 80 (2009) 033003 [arXiv:0906.1523] [INSPIRE].

    ADS  Google Scholar 

  9. M. Albrecht, T. Feldmann and T. Mannel, Goldstone bosons in effective theories with spontaneously broken flavour symmetry, JHEP 10 (2010) 089 [arXiv:1002.4798] [INSPIRE].

    Article  ADS  Google Scholar 

  10. B. Grinstein, M. Redi and G. Villadoro, Low scale flavor gauge symmetries, JHEP 11 (2010) 067 [arXiv:1009.2049] [INSPIRE].

    Article  ADS  Google Scholar 

  11. R. Alonso, M. Gavela, L. Merlo and S. Rigolin, On the scalar potential of minimal flavour violation, JHEP 07 (2011) 012 [arXiv:1103.2915] [INSPIRE].

    Article  ADS  Google Scholar 

  12. E. Nardi, Naturally large Yukawa hierarchies, Phys. Rev. D 84 (2011) 036008 [arXiv:1105.1770] [INSPIRE].

    ADS  Google Scholar 

  13. I. de Medeiros Varzielas, Non-abelian family symmetries in Pati-Salam unification, JHEP 01 (2012) 097 [arXiv:1111.3952] [INSPIRE].

    Article  Google Scholar 

  14. R.N. Mohapatra, Gauged flavor, supersymmetry and grand unification, AIP Conf. Proc. 1467 (2012) 7 [arXiv:1205.6190] [INSPIRE].

    Article  ADS  Google Scholar 

  15. Z.-z. Xing, H. Zhang and S. Zhou, Updated values of running quark and lepton masses, Phys. Rev. D 77 (2008) 113016 [arXiv:0712.1419] [INSPIRE].

    ADS  Google Scholar 

  16. L. Michel and L. Radicati, Properties of the breaking of hadronic internal symmetry, Annals Phys. 66 (1971) 758 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. R. Slansky, Group theory for unified model building, Phys. Rept. 79 (1981) 1 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. J. Kim, General method for analyzing Higgs potentials, Nucl. Phys. B 196 (1982) 285 [INSPIRE].

    Article  ADS  Google Scholar 

  19. L. Michel, Minima of Higgs-Landau polynomials, contribution to the A. Visconti seminar, CERN-TH-2716 (1979).

  20. S. Meljanac, Origin of counter examples to Michels conjecture, Phys. Lett. B 168 (1986) 371 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. M. Abud, G. Anastaze, P. Eckert and H. Ruegg, Counter example to Michels conjecture, Phys. Lett. B 142 (1984) 371 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. M. Abud, G. Anastaze, P. Eckert and H. Ruegg, Minima of Higgs potentials corresponding to nonmaximal isotropy subgroups, Annals Phys. 162 (1985) 155 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. C.J. Cummins and R.C. King, Absolute minima of the Higgs potential for the 75 of SU(5), J. Phys. A 19 (1986) 161 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  24. T. Hubsch, S. Meljanac, S. Pallua and G.G. Ross, The missing multiplet mechanism and 75 breaking of supersymmetric SU(5), Phys. Lett. B 161 (1985) 122 [INSPIRE].

    Article  ADS  Google Scholar 

  25. H. Georgi and S.L. Glashow, Spontaneously broken gauge symmetry and elementary particle masses, Phys. Rev. D 6 (1972) 2977 [INSPIRE].

    ADS  Google Scholar 

  26. H. Georgi and A. Pais, Natural stepwise breaking of gauge and discrete symmetries, Phys. Rev. D 16 (1977) 3520 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  27. S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].

    ADS  Google Scholar 

  28. H. Georgi and A. Pais, Vacuum symmetry and the pseudogoldstone phenomenon, Phys. Rev. D 12 (1975) 508 [INSPIRE].

    ADS  Google Scholar 

  29. M.B. Einhorn and D.R.T. Jones, A new renormalization group approach to multiscale problems, Nucl. Phys. B 230 (1984) 261 [INSPIRE].

    Article  ADS  Google Scholar 

  30. M. Bando, T. Kugo, N. Maekawa and H. Nakano, Improving the effective potential: multimass scale case, Prog. Theor. Phys. 90 (1993) 405 [hep-ph/9210229] [INSPIRE].

    Article  ADS  Google Scholar 

  31. C. Ford and C. Wiesendanger, A multiscale subtraction scheme and partial renormalization group equations in the O(N) symmetric ϕ 4 theory, Phys. Rev. D 55 (1997) 2202 [hep-ph/9604392] [INSPIRE].

    ADS  Google Scholar 

  32. C. Ford and C. Wiesendanger, Multiscale renormalization, Phys. Lett. B 398 (1997) 342 [hep-th/9612193] [INSPIRE].

    Article  ADS  Google Scholar 

  33. J. Casas, V. Di Clemente and M. Quirós, The effective potential in the presence of several mass scales, Nucl. Phys. B 553 (1999) 511 [hep-ph/9809275] [INSPIRE].

    Article  ADS  Google Scholar 

  34. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  35. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  36. G. Degrassi et al., Higgs mass and vacuum stability in the standard model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

    Article  ADS  Google Scholar 

  37. G. D’Ambrosio, G. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].

    Article  ADS  Google Scholar 

  38. C. Jarlskog, A basis independent formulation of the connection between quark mass matrices, CP-violation and experiment, Z. Phys. C 29 (1985) 491 [INSPIRE].

    ADS  Google Scholar 

  39. C.S. Fong and E. Nardi, Quark masses and mixings from spontaneous breaking of the SU(3)3 flavour symmetry, in preparation.

  40. F. Wilczek, Axions and family symmetry breaking, Phys. Rev. Lett. 49 (1982) 1549 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. CLEO collaboration, R. Ammar et al., Search for the familon via B ±π ± X 0 , B ±K ± X 0 and B 0K 0(S)X 0 decays, Phys. Rev. Lett. 87 (2001) 271801 [hep-ex/0106038] [INSPIRE].

    Article  Google Scholar 

  42. M. Atiya et al., Search for the decay K +π + neutrino anti-neutrino, Phys. Rev. Lett. 70 (1993) 2521 [Erratum ibid. 71 (1993) 305] [INSPIRE].

  43. E949 collaboration, V. Anisimovsky et al., Improved measurement of the \( {K^{+}}\to {\pi^{+}}\nu \overline{\nu} \) branching ratio, Phys. Rev. Lett. 93 (2004) 031801 [hep-ex/0403036] [INSPIRE].

    Article  ADS  Google Scholar 

  44. A. Jodidio et al., Search for right-handed currents in muon decay, Phys. Rev. D 34 (1986) 1967 [Erratum ibid. D 37 (1988) 237] [INSPIRE].

  45. R. Bolton et al., Search for rare muon decays with the crystal box detector, Phys. Rev. D 38 (1988) 2077 [INSPIRE].

    ADS  Google Scholar 

  46. R. Jackiw, Functional evaluation of the effective potential, Phys. Rev. D 9 (1974) 1686 [INSPIRE].

    ADS  Google Scholar 

  47. P. Ruffini, Teoria generale delle equazioni, in cui si dimostra impossibile la soluzione algebraica delle equazioni generali di grado superiore al quarto, in Opere matematiche di Paolo Ruffini. Volume 1, E. Bortolotti ed., Cremonese, Roma, Italy (1953).

    Google Scholar 

  48. N.H. Abel, Beweis der Unmöglichkeit, algebraische Gleichungen von höheren Graden als dem vierten allgemein aufzulösen, J. Reine Angew. Math. 1 (1826) 65; also in N.H. Abel, Oeuvres completes, L. Sylow and S. Lie, eds., Johnson Reprint Corp., U.S.A. (1988).

  49. D. Comelli, M. Pietroni and A. Riotto, On the spontaneous CP breaking at finite temperature in a nonminimal supersymmetric model, Phys. Rev. D 50 (1994) 7703 [hep-ph/9406368] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Nardi.

Additional information

ArXiv ePrint: 1211.6428

Rights and permissions

Reprints and permissions

About this article

Cite this article

Espinosa, J.R., Fong, C.S. & Nardi, E. Yukawa hierarchies from spontaneous breaking of the SU(3) L × SU(3) R flavour symmetry?. J. High Energ. Phys. 2013, 137 (2013). https://doi.org/10.1007/JHEP02(2013)137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2013)137

Keywords

Navigation