Skip to main content
Log in

Symmetries and loops in inflation

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In this paper, we prove that the superhorizon conservation of the curvature perturbation ζ in single-field inflation holds as an operator statement. This implies that all ζ-correlators are time independent at all orders in the loop expansion. Our result follows directly from locality and diffeomorphism invariance of the underlying theory. We also explore the relationship between the conservation of ζ, the single-field consistency relation and the renormalization of composite operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Wands, K.A. Malik, D.H. Lyth and A.R. Liddle, A new approach to the evolution of cosmological perturbations on large scales, Phys. Rev. D 62 (2000) 043527 [astro-ph/0003278] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  2. S. Weinberg, Adiabatic modes in cosmology, Phys. Rev. D 67 (2003) 123504 [astro-ph/0302326] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. G. Rigopoulos and E. Shellard, The separate universe approach and the evolution of nonlinear superhorizon cosmological perturbations, Phys. Rev. D 68 (2003) 123518 [astro-ph/0306620] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. D.H. Lyth, K.A. Malik and M. Sasaki, A general proof of the conservation of the curvature perturbation, JCAP 05 (2005) 004 [astro-ph/0411220] [INSPIRE].

    Article  ADS  Google Scholar 

  5. D. Langlois and F. Vernizzi, Conserved non-linear quantities in cosmology, Phys. Rev. D 72 (2005) 103501 [astro-ph/0509078] [INSPIRE].

    ADS  Google Scholar 

  6. S. Weinberg, Quantum contributions to cosmological correlations. II. Can these corrections become large?, Phys. Rev. D 74 (2006) 023508 [hep-th/0605244] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. S. Weinberg, Quantum contributions to cosmological correlations, Phys. Rev. D 72 (2005) 043514 [hep-th/0506236] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. L. Senatore and M. Zaldarriaga, On loops in inflation, JHEP 12 (2010) 008 [arXiv:0912.2734] [INSPIRE].

    Article  ADS  Google Scholar 

  9. P. Creminelli, M.A. Luty, A. Nicolis and L. Senatore, Starting the universe: stable violation of the null energy condition and non-standard cosmologies, JHEP 12 (2006) 080 [hep-th/0606090] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, The effective field theory of inflation, JHEP 03 (2008) 014 [arXiv:0709.0293] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. K. Hinterbichler, L. Hui and J. Khoury, Conformal symmetries of adiabatic modes in cosmology, JCAP 08 (2012) 017 [arXiv:1203.6351] [INSPIRE].

    Article  ADS  Google Scholar 

  12. P. Creminelli, J. Norena and M. Simonovic, Conformal consistency relations for single-field inflation, JCAP 07 (2012) 052 [arXiv:1203.4595] [INSPIRE].

    Article  ADS  Google Scholar 

  13. J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].

    Article  ADS  Google Scholar 

  14. S. Weinberg, The quantum theory of fields, volume 1, Cambridge University Press, Cambridge U.K. (2005).

  15. S. Weinberg, The quantum theory of fields, volume 2, Cambridge University Press, Cambridge U.K. (2005).

  16. J. Collins, Renormalization: an introduction to renormalization, the renormalization group, and the operator-product expansion, Cambridge University Press, Cambridge U.K. (1984).

    Book  MATH  Google Scholar 

  17. L. Senatore and M. Zaldarriaga, The effective field theory of multifield inflation, JHEP 04 (2012) 024 [arXiv:1009.2093] [INSPIRE].

    Article  ADS  Google Scholar 

  18. L. Senatore and M. Zaldarriaga, A naturally large four-point function in single field inflation, JCAP 01 (2011) 003 [arXiv:1004.1201] [INSPIRE].

    Article  ADS  Google Scholar 

  19. D. Baumann and D. Green, Equilateral non-Gaussianity and new physics on the horizon, JCAP 09 (2011) 014 [arXiv:1102.5343] [INSPIRE].

    Article  ADS  Google Scholar 

  20. D. Baumann and D. Green, Signatures of supersymmetry from the early universe, Phys. Rev. D 85 (2012) 103520 [arXiv:1109.0292] [INSPIRE].

    ADS  Google Scholar 

  21. D. Baumann and D. Green, A field range bound for general single-field inflation, JCAP 05 (2012) 017 [arXiv:1111.3040] [INSPIRE].

    Article  ADS  Google Scholar 

  22. S.R. Behbahani and D. Green, Collective symmetry breaking and resonant non-Gaussianity, JCAP 11 (2012) 056 [arXiv:1207.2779] [INSPIRE].

    Article  ADS  Google Scholar 

  23. A. Nicolis and F. Piazza, Spontaneous symmetry probing, JHEP 06 (2012) 025 [arXiv:1112.5174] [INSPIRE].

    Article  ADS  Google Scholar 

  24. S.R. Behbahani, A. Dymarsky, M. Mirbabayi and L. Senatore, (Small) resonant non-Gaussianities: signatures of a discrete shift symmetry in the effective field theory of inflation, JCAP 12 (2012) 036 [arXiv:1111.3373] [INSPIRE].

    Article  ADS  Google Scholar 

  25. R. Gwyn, G.A. Palma, M. Sakellariadou and S. Sypsas, Effective field theory of weakly coupled inflationary models, arXiv:1210.3020 [INSPIRE].

  26. D. Lopez Nacir, R.A. Porto, L. Senatore and M. Zaldarriaga, Dissipative effects in the effective field theory of inflation, JHEP 01 (2012) 075 [arXiv:1109.4192] [INSPIRE].

    Article  Google Scholar 

  27. D. Lopez Nacir, R.A. Porto and M. Zaldarriaga, The consistency condition for the three-point function in dissipative single-clock inflation, JCAP 09 (2012) 004 [arXiv:1206.7083] [INSPIRE].

    Article  ADS  Google Scholar 

  28. J.M. Bardeen, P.J. Steinhardt and M.S. Turner, Spontaneous creation of almost scale-free density perturbations in an inflationary universe, Phys. Rev. D 28 (1983) 679 [INSPIRE].

    ADS  Google Scholar 

  29. D. Salopek and J. Bond, Nonlinear evolution of long wavelength metric fluctuations in inflationary models, Phys. Rev. D 42 (1990) 3936 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. V. Assassi, D. Baumann and D. Green, On soft limits of inflationary correlation functions, JCAP 11 (2012) 047 [arXiv:1204.4207] [INSPIRE].

    Article  ADS  Google Scholar 

  31. E. Kahya, V. Onemli and R. Woodard, The zeta-zeta correlator is time dependent, Phys. Lett. B 694 (2010) 101 [arXiv:1006.3999] [INSPIRE].

    Article  ADS  Google Scholar 

  32. G.L. Pimentel, L. Senatore and M. Zaldarriaga, On loops in inflation III: time independence of zeta in single clock inflation, JHEP 07 (2012) 166 [arXiv:1203.6651] [INSPIRE].

    Article  ADS  Google Scholar 

  33. P. Creminelli and M. Zaldarriaga, Single field consistency relation for the 3-point function, JCAP 10 (2004) 006 [astro-ph/0407059] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. D.H. Lyth and D. Seery, Classicality of the primordial perturbations, Phys. Lett. B 662 (2008) 309 [astro-ph/0607647] [INSPIRE].

    Article  ADS  Google Scholar 

  35. P. Dirac, The principles of quantum mechanics, Clarendon Press, Oxford U.K. (1958).

    MATH  Google Scholar 

  36. D. Harlow and D. Stanford, Operator dictionaries and wave functions in AdS/CFT and dS/CFT, arXiv:1104.2621 [INSPIRE].

  37. S. Endlich, A. Nicolis and J. Wang, Solid inflation, arXiv:1210.0569 [INSPIRE].

  38. P. Creminelli, J. Norena, M. Pena and M. Simonovic, Khronon inflation, JCAP 11 (2012) 032 [arXiv:1206.1083] [INSPIRE].

    Article  ADS  Google Scholar 

  39. M.H. Namjoo, H. Firouzjahi and M. Sasaki, Violation of non-Gaussianity consistency relation in a single field inflationary model, arXiv:1210.3692 [INSPIRE].

  40. T. Banks and L. Mannelli, De Sitter vacua, renormalization and locality, Phys. Rev. D 67 (2003) 065009 [hep-th/0209113] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  41. A. Kehagias and A. Riotto, Operator product expansion of inflationary correlators and conformal symmetry of de Sitter, Nucl. Phys. B 864 (2012) 492 [arXiv:1205.1523] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. D. Wands, Multiple-field inflation, Lect. Notes Phys. 738 (2008) 275 [astro-ph/0702187] [INSPIRE].

    Article  ADS  Google Scholar 

  43. D. Langlois, Non-Gaussianities from isocurvature modes, J. Phys. Conf. Ser. 405 (2012) 012003 [arXiv:1209.0330] [INSPIRE].

    Article  ADS  Google Scholar 

  44. I. Agullo and L. Parker, Non-Gaussianities and the stimulated creation of quanta in the inflationary universe, Phys. Rev. D 83 (2011) 063526 [arXiv:1010.5766] [INSPIRE].

    ADS  Google Scholar 

  45. I. Agullo and L. Parker, Stimulated creation of quanta during inflation and the observable universe, Gen. Rel. Grav. 43 (2011) 2541 [Int. J. Mod. Phys. D 20 (2011) 2861] [arXiv:1106.4240] [INSPIRE].

  46. J. Ganc, Calculating the local-type f NL for slow-roll inflation with a non-vacuum initial state, Phys. Rev. D 84 (2011) 063514 [arXiv:1104.0244] [INSPIRE].

    ADS  Google Scholar 

  47. D. Chialva, Signatures of very high energy physics in the squeezed limit of the bispectrum (violation of Maldacenas condition), JCAP 10 (2012) 037 [arXiv:1108.4203] [INSPIRE].

    ADS  Google Scholar 

  48. R. Flauger, D. Green and R. Porto, Squeezing out new physics from the early universe, to appear.

  49. D. Seery, Infrared effects in inflationary correlation functions, Class. Quant. Grav. 27 (2010) 124005 [arXiv:1005.1649] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. S.B. Giddings and M.S. Sloth, Semiclassical relations and IR effects in de Sitter and slow-roll space-times, JCAP 01 (2011) 023 [arXiv:1005.1056] [INSPIRE].

    Article  ADS  Google Scholar 

  51. C.T. Byrnes, M. Gerstenlauer, A. Hebecker, S. Nurmi and G. Tasinato, Inflationary infrared divergences: geometry of the reheating surface versus δN formalism, JCAP 08 (2010) 006 [arXiv:1005.3307] [INSPIRE].

    Article  ADS  Google Scholar 

  52. M. Gerstenlauer, A. Hebecker and G. Tasinato, Inflationary correlation functions without infrared divergences, JCAP 06 (2011) 021 [arXiv:1102.0560] [INSPIRE].

    Article  ADS  Google Scholar 

  53. S.B. Giddings and M.S. Sloth, Cosmological observables, IR growth of fluctuations and scale-dependent anisotropies, Phys. Rev. D 84 (2011) 063528 [arXiv:1104.0002] [INSPIRE].

    ADS  Google Scholar 

  54. S.B. Giddings and M.S. Sloth, Fluctuating geometries, q-observables and infrared growth in inflationary spacetimes, Phys. Rev. D 86 (2012) 083538 [arXiv:1109.1000] [INSPIRE].

    ADS  Google Scholar 

  55. S. Miao and R. Woodard, Issues concerning loop corrections to the primordial power spectra, JCAP 07 (2012) 008 [arXiv:1204.1784] [INSPIRE].

    Article  ADS  Google Scholar 

  56. L. Senatore and M. Zaldarriaga, On loops in inflation II: IR effects in single clock inflation, JHEP 01 (2013) 109 [arXiv:1203.6354] [INSPIRE].

    Article  ADS  Google Scholar 

  57. L. Senatore and M. Zaldarriaga, The constancy of ζ in single-clock inflation at all loops, arXiv:1210.6048 [INSPIRE].

  58. A. Strominger, The dS/CFT correspondence, JHEP 10 (2001) 034 [hep-th/0106113] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Green.

Additional information

ArXiv ePrint: 1210.7792

Rights and permissions

Reprints and permissions

About this article

Cite this article

Assassi, V., Baumann, D. & Green, D. Symmetries and loops in inflation. J. High Energ. Phys. 2013, 151 (2013). https://doi.org/10.1007/JHEP02(2013)151

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2013)151

Keywords

Navigation