Skip to main content
Log in

Essentials of blackfold dynamics

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We develop and significantly generalize the effective worldvolume theory for higher-dimensional black holes recently proposed by the authors. The theory, which regards the black hole as a black brane curved into a submanifold of a background spacetime — a blackfold—, can be formulated in terms of an effective fluid that lives on a dynamical worldvolume. Thus the blackfold equations split into intrinsic (fluid-dynamical) equations, and extrinsic (generalized geodesic embedding) equations. The intrinsic equations can be easily solved for equilibrium configurations, thus providing an efficient formalism for the approximate construction of novel stationary black holes. Furthermore, it is possible to study time evolution. In particular, the long-wavelength component of the Gregory-Laflamme instability of black branes is obtained as a sound-mode instability of the effective fluid. We also discuss action principles, connections to black hole thermodynamics, and other consequences and possible extensions of the approach. Finally, we outline how the fluid/AdS-gravity correspondence is related to this formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Blackfolds, Phys. Rev. Lett. 102 (2009) 191301 [arXiv:0902.0427] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. R.C. Myers and M.J. Perry, Black holes in higher dimensional space-times, Ann. Phys. 172 (1986) 304 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. R. Emparan and R.C. Myers, Instability of ultra-spinning black holes, JHEP 09 (2003) 025 [hep-th/0308056] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. R. Emparan and H.S. Reall, A rotating black ring in five dimensions, Phys. Rev. Lett. 88 (2002) 101101 [hep-th/0110260] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. R. Emparan and H.S. Reall, Black holes in higher dimensions, Living Rev. Rel. 11 (2008) 6 [arXiv:0801.3471] [SPIRES].

    Google Scholar 

  6. R. Emparan, T. Harmark, V. Niarchos, N.A. Obers and M.J. Rodriguez, The phase structure of higher-dimensional black rings and black holes, JHEP 10 (2007) 110 [arXiv:0708.2181] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. O.J.C. Dias, P. Figueras, R. Monteiro, J.E. Santos and R. Emparan, Instability and new phases of higher-dimensional rotating black holes, Phys. Rev. D 80 (2009) 111701 [arXiv:0907.2248] [SPIRES].

    ADS  Google Scholar 

  8. H.K. Kunduri, J. Lucietti and H.S. Reall, Near-horizon symmetries of extremal black holes, Class. Quant. Grav. 24 (2007) 4169 [arXiv:0705.4214] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. N.A. Obers, Black holes in higher-dimensional gravity, Lect. Notes Phys. 769 (2009) 211 [arXiv:0802.0519] [SPIRES].

    Article  ADS  Google Scholar 

  10. V. Niarchos, Phases of higher dimensional black holes, Mod. Phys. Lett. A 23 (2008) 2625 [arXiv:0808.2776] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  11. H. Elvang and R. Emparan, Black rings, supertubes and a stringy resolution of black hole non-uniqueness, JHEP 11 (2003) 035 [hep-th/0310008] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. R. Emparan and H.S. Reall, Black rings, Class. Quant. Grav. 23 (2006) R169 [hep-th/0608012] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. M.M. Caldarelli, R. Emparan and M.J. Rodriguez, Black rings in (Anti)-de Sitter space, JHEP 11 (2008) 011 [arXiv:0806.1954] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. J. Camps, R. Emparan, P. Figueras, S. Giusto and A. Saxena, Black rings in Taub-NUT and D0-D6 interactions, JHEP 02 (2009) 021 [arXiv:0811.2088] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. B. Carter, Essentials of classical brane dynamics, Int. J. Theor. Phys. 40 (2001) 2099 [gr-qc/0012036] [SPIRES].

    Article  MATH  Google Scholar 

  16. R.S. Hanni and R. Ruffini, Lines of force of a point charge near a Schwarzschild black hole, Phys. Rev. D 8 (1973) 3259 [SPIRES].

    ADS  Google Scholar 

  17. T. Damour, Black hole Eddy currents, Phys. Rev. D 18 (1978) 3598 [SPIRES].

    ADS  Google Scholar 

  18. R.L. Znajek, The electric and magnetic conductivity of a Kerr hole, Mon. Not. R. Astr. Soc. 185 (1978) 833.

    ADS  Google Scholar 

  19. T. Damour, Quelques propriétés mécaniques, électromagnétiques, thermodynamiques et quantiques des trous noirs, Thèse de Doctorat d’État, Université Pierre et Marie Curie, Paris VI, France (1979).

  20. T. Damour, Surface effects in black hole physics, in the proceedings of the Second Marcel Grossmann Meeting on General Relativity, R. Ruffini ed., Elsevier Science Ltd., (1982), see page 587.

  21. R.H. Price and K.S. Thorne, Membrane viewpoint on black holes: properties and evolution of the stretched horizon, Phys. Rev. D 33 (1986) 915 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  22. K.S. Thorne, R.H. Price and D.A. Macdonald, Black holes: the membrane paradigm, Yale Univ. Press, New Haven U.S.A. (1986) [SPIRES].

    Google Scholar 

  23. S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [SPIRES].

    Article  ADS  Google Scholar 

  24. E. Poisson, The motion of point particles in curved spacetime, Living Rev. Rel. 7 (2004) 6 [gr-qc/0306052] [SPIRES].

    Google Scholar 

  25. S.E. Gralla and R.M. Wald, A rigorous derivation of gravitational self-force, Class. Quant. Grav. 25 (2008) 205009 [arXiv:0806.3293] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. W.D. Goldberger, Les Houches lectures on effective field theories and gravitational radiation, hep-ph/0701129 [SPIRES].

  27. W.D. Goldberger and I.Z. Rothstein, An effective field theory of gravity for extended objects, Phys. Rev. D 73 (2006) 104029 [hep-th/0409156] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  28. B. Kol and M. Smolkin, Classical effective field theory and caged black holes, Phys. Rev. D 77 (2008) 064033 [arXiv:0712.2822] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  29. J.D. Brown and J.W. York, Jr., Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  30. J. Le Witt and S.F. Ross, Black holes and black strings in plane waves, JHEP 01 (2010) 101 [arXiv:0910.4332] [SPIRES].

    Article  Google Scholar 

  31. Y. Mino, M. Sasaki and T. Tanaka, Gravitational radiation reaction to a particle motion, Phys. Rev. D 55 (1997) 3457 [gr-qc/9606018] [SPIRES].

    ADS  Google Scholar 

  32. T. Harmark, Small black holes on cylinders, Phys. Rev. D 69 (2004) 104015 [hep-th/0310259] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  33. D. Gorbonos and B. Kol, A dialogue of multipoles: matched asymptotic expansion for caged black holes, JHEP 06 (2004) 053 [hep-th/0406002] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. S.S. Gubser, On non-uniform black branes, Class. Quant. Grav. 19 (2002) 4825 [hep-th/0110193] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. T. Wiseman, Static axisymmetric vacuum solutions and non-uniform black strings, Class. Quant. Grav. 20 (2003) 1137 [hep-th/0209051] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. R. Gregory and R. Laflamme, Black strings and p-branes are unstable, Phys. Rev. Lett. 70 (1993) 2837 [hep-th/9301052] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. T. Harmark, V. Niarchos and N.A. Obers, Instabilities of black strings and branes, Class. Quant. Grav. 24 (2007) R1 [hep-th/0701022] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  38. H. Elvang, R. Emparan and A. Virmani, Dynamics and stability of black rings, JHEP 12 (2006) 074 [hep-th/0608076] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. M.M. Caldarelli, O.J.C. Dias, R. Emparan and D. Klemm, Black holes as lumps of fluid, JHEP 04 (2009) 024 [arXiv:0811.2381] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. S.W. Hawking, Black holes in general relativity, Commun. Math. Phys. 25 (1972) 152 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. B.S. Kay and R.M. Wald, Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on space-times with a bifurcate Killing horizon, Phys. Rept. 207 (1991) 49 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  42. S. Hollands, A. Ishibashi and R.M. Wald, A higher dimensional stationary rotating black hole must be axisymmetric, Commun. Math. Phys. 271 (2007) 699 [gr-qc/0605106] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  43. G.W. Gibbons and S.W. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev. D 15 (1977) 2752 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  44. J.D. Brown, Action functionals for relativistic perfect fluids, Class. Quant. Grav. 10 (1993) 1579 [gr-qc/9304026] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  45. B. Carter, Stability and characteristic propagation speeds in superconducting cosmic and other string models, Phys. Lett. B 228 (1989) 466 [SPIRES].

    ADS  Google Scholar 

  46. B. Carter, Perturbation dynamics for membranes and strings governed by Dirac Goto Nambu action in curved space, Phys. Rev. D 48 (1993) 4835 [SPIRES].

    ADS  Google Scholar 

  47. S.S. Gubser and I. Mitra, The evolution of unstable black holes in anti-de Sitter space, JHEP 08 (2001) 018 [hep-th/0011127] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  48. R.A. Battye and E.P.S. Shellard, String radiative back reaction, Phys. Rev. Lett. 75 (1995) 4354 [astro-ph/9408078] [SPIRES].

    Article  ADS  Google Scholar 

  49. A. Buonanno and T. Damour, Gravitational, dilatonic and axionic radiative damping of cosmic strings, Phys. Rev. D 60 (1999) 023517 [gr-qc/9801105] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  50. R.A. Battye, B. Carter and A. Mennim, Linearized self-forces for branes, Phys. Rev. D 71 (2005) 104026 [hep-th/0412053] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  51. V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  52. M. Parikh and F. Wilczek, An action for black hole membranes, Phys. Rev. D 58 (1998) 064011 [gr-qc/9712077] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  53. C. Eling and Y. Oz, Relativistic CFT hydrodynamics from the membrane paradigm, JHEP 02 (2010) 069 [arXiv:0906.4999] [SPIRES].

    Article  Google Scholar 

  54. B. Carter, Outer curvature and conformal geometry of an imbedding, J. Geom. Phys. 8 (1992) 53 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasilis Niarchose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emparan, R., Harmark, T., Niarchose, V. et al. Essentials of blackfold dynamics. J. High Energ. Phys. 2010, 63 (2010). https://doi.org/10.1007/JHEP03(2010)063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2010)063

Keywords

Navigation