Skip to main content
Log in

Phase transitions between Reissner-Nordstrom and dilatonic black holes in 4D AdS spacetime

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study Einstein-Maxwell-dilaton gravity models in four-dimensional antide Sitter (AdS) spacetime which admit the Reissner-Nordstrom (RN) black hole solution. We show that below a critical temperature the AdS-RN solution becomes unstable against scalar perturbations and the gravitational system undergoes a phase transition. We show using numerical calculations that the new phase is a charged dilatonic black hole. Using the AdS/CFT correspondence we discuss the phase transition in the dual field theory both for non-vanishing temperatures and in the extremal limit. The extremal solution has a Lifshitz scaling symmetry. We discuss the optical conductivity in the new dual phase and find interesting behavior at low frequencies where it shows a “Drude peak”. The resistivity varies with temperature in a non-monotonic way and displays a minimum at low temperatures which is reminiscent of the celebrated Kondo effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MATH  MathSciNet  ADS  Google Scholar 

  2. D.T. Son and A.O. Starinets, Viscosity, Black Holes and Quantum Field Theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [SPIRES].

    Article  ADS  Google Scholar 

  3. D. Mateos, String Theory and Quantum Chromodynamics, Class. Quant. Grav. 24 (2007) S713 [arXiv:0709.1523] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. S. Sachdev and M. Mueller, Quantum criticality and black holes, arXiv:0810.3005 [SPIRES].

  5. C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES].

    Google Scholar 

  6. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. J. McGreevy, Holographic duality with a view toward many-body physics, arXiv:0909.0518 [SPIRES].

  8. D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. W. Israel, Event horizons in static vacuum space-times, Phys. Rev. 164 (1967) 1776 [SPIRES].

    Article  ADS  Google Scholar 

  10. S.S. Gubser and S.S. Pufu, The gravity dual of a p-wave superconductor, JHEP 11 (2008) 033 [arXiv:0805.2960] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].

    Article  ADS  Google Scholar 

  13. G.W. Gibbons and K.-i. Maeda, Black Holes and Membranes in Higher Dimensional Theories with Dilaton Fields, Nucl. Phys. B 298 (1988) 741 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. D. Garfinkle, G.T. Horowitz and A. Strominger, Charged black holes in string theory, Phys. Rev. D 43 (1991) 3140 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  15. S. Monni and M. Cadoni, Dilatonic black holes in a S-duality model, Nucl. Phys. B 466 (1996) 101 [hep-th/9511067] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. M.J. Duff and J.T. Liu, Anti-de Sitter black holes in gauged N = 8 supergravity, Nucl. Phys. B 554 (1999) 237 [hep-th/9901149] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. S.S. Gubser and F.D. Rocha, Peculiar properties of a charged dilatonic black hole in AdS 5, Phys. Rev. D 81 (2010) 046001 [arXiv:0911.2898] [SPIRES].

    ADS  Google Scholar 

  18. S.S. Gubser, Phase transitions near black hole horizons, Class. Quant. Grav. 22 (2005) 5121 [hep-th/0505189] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. S.S. Gubser and I. Mitra, Instability of charged black holes in anti-de Sitter space, hep-th/0009126 [SPIRES].

  20. S.A. Hartnoll and C.P. Herzog, Impure AdS/CFT, Phys. Rev. D 77 (2008) 106009 [arXiv:0801.1693] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  21. S. Kachru, X. Liu and M. Mulligan, Gravity Duals of Lifshitz-like Fixed Points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  22. K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of Charged Dilaton Black Holes, arXiv:0911.3586 [SPIRES].

  23. G.T. Horowitz and M.M. Roberts, Zero Temperature Limit of Holographic Superconductors, JHEP 11 (2009) 015 [arXiv:0908.3677] [SPIRES].

    Article  ADS  Google Scholar 

  24. S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, arXiv:0912.1061 [SPIRES].

  25. P. Breitenlohner and D.Z. Freedman, Positive Energy in anti-de Sitter Backgrounds and Gauged Extended Supergravity, Phys. Lett. B 115 (1982) 197 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  26. G. Dotti and R.J. Gleiser, Gravitational instability of Einstein-Gauss-Bonnet black holes under tensor mode perturbations, Class. Quant. Grav. 22 (2005) L1 [gr-qc/0409005] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. E. Berti, V. Cardoso and A.O. Starinets, Quasinormal modes of black holes and black branes, Class. Quant. Grav. 26 (2009) 163001 [arXiv:0905.2975] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. S. Mignemi, Exact solutions of dilaton gravity with (anti)-de Sitter asymptotics, arXiv:0907.0422 [SPIRES].

  29. I.Z. Stefanov, S.S. Yazadjiev and M.D. Todorov, Phases of 4D Scalar-tensor black holes coupled to Born-Infeld nonlinear electrodynamics, Mod. Phys. Lett. A 23 (2008) 2915 [arXiv:0708.4141] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  30. G.T. Horowitz and M.M. Roberts, Holographic Superconductors with Various Condensates, Phys. Rev. D 78 (2008) 126008 [arXiv:0810.1077] [SPIRES].

    ADS  Google Scholar 

  31. I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. T. Hertog and G.T. Horowitz, Towards a big crunch dual, JHEP 07 (2004) 073 [hep-th/0406134] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Flavor Superconductivity from Gauge/Gravity Duality, JHEP 10 (2009) 067 [arXiv:0903.1864] [SPIRES].

    Article  ADS  Google Scholar 

  34. R.-G. Cai and Y.-Z. Zhang, Black plane solutions in four-dimensional spacetimes, Phys. Rev. D 54 (1996) 4891 [gr-qc/9609065] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  35. R.-G. Cai, J.-Y. Ji and K.-S. Soh, Topological dilaton black holes, Phys. Rev. D 57 (1998) 6547 [gr-qc/9708063] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  36. C. Charmousis, B. Gouteraux and J. Soda, Einstein-Maxwell-Dilaton theories with a Liouville potential, Phys. Rev. D 80 (2009) 024028 [arXiv:0905.3337] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  37. K. Maeda, M. Natsuume and T. Okamura, Universality class of holographic superconductors, Phys. Rev. D 79 (2009) 126004 [arXiv:0904.1914] [SPIRES].

    ADS  Google Scholar 

  38. S.S. Gubser and F.D. Rocha, The gravity dual to a quantum critical point with spontaneous symmetry breaking, Phys. Rev. Lett. 102 (2009) 061601 [arXiv:0807.1737] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. S.-J. Rey, String theory on thin semiconductors: Holographic realization ofFermi points and surfaces, Prog. Theor. Phys. Suppl. 177 (2009) 128 [arXiv:0911.5295] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  40. S.-S. Lee, A Non-Fermi Liquid from a Charged Black Hole: A CriticalFermi Ball, Phys. Rev. D 79 (2009) 086006 [arXiv:0809.3402] [SPIRES].

    ADS  Google Scholar 

  41. H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, arXiv:0903.2477 [SPIRES].

  42. M. Cubrovic, J. Zaanen and K. Schalm, String Theory, Quantum Phase Transitions and the Emergent Fermi-Liquid, Science 325 (2009) 439 [arXiv:0904.1993] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  43. T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality,Fermi surfaces and AdS2, arXiv:0907.2694 [SPIRES].

  44. F. Aprile and J.G. Russo, Models of Holographic superconductivity, Phys. Rev. D 81 (2010) 026009 [arXiv:0912.0480] [SPIRES].

    ADS  Google Scholar 

  45. J.P. Gauntlett, J. Sonner and T. Wiseman, Holographic superconductivity in M-theory, Phys. Rev. Lett. 103 (2009) 151601 [arXiv:0907.3796] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  46. S.S. Gubser, S.S. Pufu and F.D. Rocha, Quantum critical superconductors in string theory and M-theory, Phys. Lett. B 683 (2010) 201 [arXiv:0908.0011] [SPIRES].

    ADS  Google Scholar 

  47. S.S. Gubser, C.P. Herzog, S.S. Pufu and T. Tesileanu, Superconductors from Superstrings, Phys. Rev. Lett. 103 (2009) 141601 [arXiv:0907.3510] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  48. J. Gauntlett, J. Sonner and T. Wiseman, Quantum Criticality and Holographic Superconductors in M-theory, JHEP 02 (2010) 060 [arXiv:0912.0512] [SPIRES].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Cadoni.

Additional information

ArXiv ePrint: 0912.3520

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cadoni, M., D’Appollonio, G. & Pani, P. Phase transitions between Reissner-Nordstrom and dilatonic black holes in 4D AdS spacetime. J. High Energ. Phys. 2010, 100 (2010). https://doi.org/10.1007/JHEP03(2010)100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2010)100

Keywords

Navigation