Skip to main content
Log in

The ABCDEFG of instantons and W-algebras

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

For arbitrary gauge groups, we check at the one-instanton level that the Nekrasov partition function of pure \( \mathcal{N} = {2} \) super Yang-Mills is equal to the norm of a certain coherent state of the corresponding W-algebra. For non-simply-laced gauge groups, we confirm in particular that the coherent state is in the twisted sector of a simply-laced W-algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. A. Klemm, W. Lerche, P. Mayr, C. Vafa and N.P. Warner, Selfdual strings and N = 2 supersymmetric field theory, Nucl. Phys. B 477 (1996) 746 [hep-th/9604034] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500 (1997) 3 [hep-th/9703166] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. D. Gaiotto, N = 2 dualities, arXiv:0904.2715 [INSPIRE].

  6. D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin Systems and the WKB Approximation, arXiv:0907.3987 [INSPIRE].

  7. A. Klemm, M. Mariño and S. Theisen, Gravitational corrections in supersymmetric gauge theory and matrix models, JHEP 03 (2003) 051 [hep-th/0211216] [INSPIRE].

    Article  ADS  Google Scholar 

  8. R. Dijkgraaf, A. Sinkovics and M. Temurhan, Matrix models and gravitational corrections, Adv. Theor. Math. Phys. 7 (2004) 1155 [hep-th/0211241] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  9. H. Fuji and S. Mizoguchi, Gravitational corrections for supersymmetric gauge theories with flavors via matrix models, Nucl. Phys. B 698 (2004) 53 [hep-th/0405128] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. E. Witten, On S duality in Abelian gauge theory, Selecta Math. 1 (1995) 383 [hep-th/9505186] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  11. G.W. Moore and E. Witten, Integration over the u plane in Donaldson theory, Adv. Theor. Math. Phys. 1 (1998) 298 [hep-th/9709193] [INSPIRE].

    MathSciNet  Google Scholar 

  12. M. Aganagic, A. Klemm, M. Mariño and C. Vafa, The Topological vertex, Commun. Math. Phys. 254 (2005) 425 [hep-th/0305132] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  13. N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, hep-th/0306238 [INSPIRE].

  14. R. Dijkgraaf, L. Hollands, P. Sulkowski and C. Vafa, Supersymmetric gauge theories, intersecting branes and free fermions, JHEP 02 (2008) 106 [arXiv:0709.4446] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. N. Wyllard, A(N-1) conformal Toda field theory correlation functions from conformal N = 2 SU(N) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. G. Bonelli and A. Tanzini, Hitchin systems, N = 2 gauge theories and W-gravity, Phys. Lett. B 691 (2010) 111 [arXiv:0909.4031] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. H. Itoyama, K. Maruyoshi and T. Oota, The Quiver Matrix Model and 2d-4d Conformal Connection, Prog. Theor. Phys. 123 (2010) 957 [arXiv:0911.4244] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  19. L. Hollands, C.A. Keller and J. Song, From SO/Sp instantons to W-algebra blocks, JHEP 03 (2011) 053 [arXiv:1012.4468] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. L. Hollands, C.A. Keller and J. Song, Towards a 4d/2d correspondence for Sicilian quivers, JHEP 10 (2011) 100 [arXiv:1107.0973] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. D. Gaiotto, Asymptotically free N = 2 theories and irregular conformal blocks, arXiv:0908.0307 [INSPIRE].

  22. A. Marshakov, A. Mironov and A. Morozov, On non-conformal limit of the AGT relations, Phys. Lett. B 682 (2009) 125 [arXiv:0909.2052] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  23. M. Taki, On AGT Conjecture for Pure Super Yang-Mills and W-algebra, JHEP 05 (2011) 038 [arXiv:0912.4789] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. E. B. Vinberg and V. L. Popov, On a class of quasihomogeneous affine varieties, Math. USSR-Izv. 6 (1972) 743.

    Article  Google Scholar 

  25. D. Garfinkle, A new construction of the Joseph ideal, Chap. III (1982), http://hdl.handle.net/1721.1/15620.

  26. S. Benvenuti, A. Hanany and N. Mekareeya, The Hilbert Series of the One Instanton Moduli Space, JHEP 06 (2010) 100 [arXiv:1005.3026] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. M. Bershadsky and H. Ooguri, Hidden SL(n) Symmetry in Conformal Field Theories, Commun. Math. Phys. 126 (1989) 49 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. B. Feigin and E. Frenkel, Quantization of the Drinfeld-Sokolov reduction, Phys. Lett. B 246 (1990) 75 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  29. P. Bouwknegt and K. Schoutens, W symmetry in conformal field theory, Phys. Rept. 223 (1993) 183 [hep-th/9210010] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. K. Thielemans, A Mathematica package for computing operator product expansions, Int. J. Mod. Phys. C 2 (1991) 787 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  31. E.J. Martinec and N.P. Warner, Integrable systems and supersymmetric gauge theory, Nucl. Phys. B 459 (1996) 97 [hep-th/9509161] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. A. Klemm, W. Lerche, S. Yankielowicz and S. Theisen, Simple singularities and N = 2 supersymmetric Yang-Mills theory, Phys. Lett. B 344 (1995) 169 [hep-th/9411048] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  33. A. Gorsky, I. Krichever, A. Marshakov, A. Mironov and A. Morozov, Integrability and Seiberg-Witten exact solution, Phys. Lett. B 355 (1995) 466 [hep-th/9505035] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  34. H. Itoyama and A. Morozov, Integrability and Seiberg-Witten theory: Curves and periods, Nucl. Phys. B 477 (1996) 855 [hep-th/9511126] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. W. Lerche and N. Warner, Exceptional SW geometry from ALE fibrations, Phys. Lett. B 423 (1998) 79 [hep-th/9608183] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  36. T.J. Hollowood, Strong coupling N = 2 gauge theory with arbitrary gauge group, Adv. Theor. Math. Phys. 2 (1998) 335 [hep-th/9710073] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  37. D.-E. Diaconescu, R. Donagi and T. Pantev, Intermediate Jacobians and ADE Hitchin Systems, hep-th/0607159 [INSPIRE].

  38. P. Slodowy, Simple Singularities and Simple Algebraic Groups, Lecture Notes in Mathematics 815, Springer (1980).

  39. J. Fuchs, B. Schellekens and C. Schweigert, From Dynkin diagram symmetries to fixed point structures, Commun. Math. Phys. 180 (1996) 39 [hep-th/9506135] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. N.J. Evans, C.V. Johnson and A.D. Shapere, Orientifolds, branes and duality of 4 − D gauge theories, Nucl. Phys. B 505 (1997) 251 [hep-th/9703210] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. K. Landsteiner, E. Lopez and D.A. Lowe, N = 2 supersymmetric gauge theories, branes and orientifolds, Nucl. Phys. B 507 (1997) 197 [hep-th/9705199] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. A. Brandhuber, J. Sonnenschein, S. Theisen and S. Yankielowicz, M theory and Seiberg-Witten curves: Orthogonal and symplectic groups, Nucl. Phys. B 504 (1997) 175 [hep-th/9705232] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. A. Braverman, Instanton counting via affine Lie algebras. 1. Equivariant J functions of (affine) flag manifolds and Whittaker vectors, in Workshop on algebraic structures and moduli spaces: CRM Workshop, J. Hurturbise and E. Markman eds. AMS, (2003), math/0401409 [INSPIRE].

  44. A. Braverman and P. Etingof, Instanton counting via affine Lie algebras II: From Whittaker vectors to the Seiberg-Witten prepotential, in Studies in Lie Theory: dedicated to A. Joseph on his 60th birthday, J. Bernstein, V. Hinich, and A. Melnikov eds., Birkhäuser (2006), math/0409441 [INSPIRE].

  45. N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [INSPIRE].

    MathSciNet  Google Scholar 

  46. D. Finnell and P. Pouliot, Instanton calculations versus exact results in four-dimensional SUSY gauge theories, Nucl. Phys. B 453 (1995) 225 [hep-th/9503115] [INSPIRE].

    Article  ADS  Google Scholar 

  47. K. Ito and N. Sasakura, One instanton calculations in N = 2 supersymmetric SU(N(c)) Yang-Mills theory, Phys. Lett. B 382 (1996) 95 [hep-th/9602073] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  48. N. Dorey, T.J. Hollowood, V.V. Khoze and M.P. Mattis, The Calculus of many instantons, Phys. Rept. 371 (2002) 231 [hep-th/0206063] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. N. Nekrasov and S. Shadchin, ABCD of instantons, Commun. Math. Phys. 252 (2004) 359 [hep-th/0404225] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. M. Mariño and N. Wyllard, A Note on instanton counting for N = 2 gauge theories with classical gauge groups, JHEP 05 (2004) 021 [hep-th/0404125] [INSPIRE].

    Article  ADS  Google Scholar 

  51. C.W. Bernard, N.H. Christ, A.H. Guth and E.J. Weinberg, Pseudoparticle Parameters for Arbitrary Gauge Groups, Phys. Rev. D 16 (1977) 2967 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  52. A. Vainshtein, V.I. Zakharov, V. Novikov and M.A. Shifman, ABC’s of Instantons, Sov. Phys. Usp. 25 (1982) 195 [INSPIRE].

    Article  ADS  Google Scholar 

  53. P. Kronheimer, Instantons and the geometry of the nilpotent variety, J. Diff. Geom. 32 (1990) 473 [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  54. R. Brylinski, Instantons and Kähler geometry of nilpotent orbits, math/9811032. Published in Representation Theories and Algebraic Geometry. ASI NATO Series, Edited by A. Broer, Kluwer 1998, pp. 85-125 [INSPIRE].

  55. P. Kobak and A. Swann, The HyperK\”ahler Geometry Associated to Wolf Spaces, math/0001025.

  56. K. Ito and N. Sasakura, Exact and microscopic one instanton calculations in N = 2 supersymmetric Yang-Mills theories, Nucl. Phys. B 484 (1997) 141 [hep-th/9608054] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. V. Drinfeld and V. Sokolov, Lie algebras and equations of Korteweg-de Vries type, J. Sov. Math. 30 (1984) 1975 [INSPIRE].

    Article  Google Scholar 

  58. V. Fateev and S.L. Lukyanov, The Models of Two-Dimensional Conformal Quantum Field Theory with Z(n) Symmetry, Int. J. Mod. Phys. A 3 (1988) 507 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  59. S.L. Lukyanov and V. Fateev, Conformally invariant models of two-dimensional QFT with Z(N) symmetry, Sov. Phys. JETP 67 (1988) 447 [INSPIRE].

    MathSciNet  Google Scholar 

  60. S.L. Lukyanov and V. Fateev, Exactly solvable models of conformal quantum theory associated with simple lie algebra D(N). (in russian), Sov. J. Nucl. Phys. 49 (1989) 925 [INSPIRE].

    MathSciNet  Google Scholar 

  61. S. L. Lukyanov and V. A. Fateev, Additional symmetries and exactly soluble models in two-dimensional conformal field theory, Soviet Scientific Reviews Series, Physics reviews A 15.2 Chur, Switzerland, Harwood ed. (1990).

  62. K. Ito and S. Terashima, Free field realization of WBC(n) and WG 2 algebras, Phys. Lett. B 354 (1995) 220 [hep-th/9503165] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  63. U. Bruzzo, F. Fucito, J.F. Morales and A. Tanzini, Multiinstanton calculus and equivariant cohomology, JHEP 05 (2003) 054 [hep-th/0211108] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  64. H. Nakajima and K. Yoshioka, Instanton counting on blowup. 1., math/0306198 [INSPIRE].

  65. D. Maulik and A. Okounkov, private communication.

  66. V. I. Arnol’d, Critical points of functions on a manifold with boundary, the simple Lie groups B k , C k , F 4 and singularities of evolutes, Uspekhi Mat. Nauk 33 (1978) 91.

    MathSciNet  MATH  Google Scholar 

  67. S. Mizoguchi, Determinant formula and unitarity for the W(3) Algebra, Phys. Lett. B 222 (1989) 226 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  68. V.G. Kac and M. Wakimoto, Quantum reduction in the twisted case, arXiv:math-ph/0404049.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaewon Song.

Additional information

ArXiv ePrint: 1111.5624

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 383 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keller, C.A., Mekareeya, N., Song, J. et al. The ABCDEFG of instantons and W-algebras. J. High Energ. Phys. 2012, 45 (2012). https://doi.org/10.1007/JHEP03(2012)045

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2012)045

Keywords

Navigation