Skip to main content
Log in

Superpolynomials for torus knots from evolution induced by cut-and-join operators

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The colored HOMFLY polynomials, which describe Wilson loop averages in Chern-Simons theory, possess an especially simple representation for torus knots, which begins from quantum R-matrix and ends up with a trivially-looking split W representation familiar from character calculus applications to matrix models and Hurwitz theory. Substitution of MacDonald polynomials for characters in these formulas provides a very simple description of “superpolynomials”, much simpler than the recently studied alternative which deforms relation to the WZNW theory and explicitly involves the Littlewood-Richardson coefficients. A lot of explicit expressions are presented for different representations (Young diagrams), many of them new. In particular, we provide the superpolynomial \( \mathcal{P}_{{\left[ 1 \right]}}^{{\left[ {m,km\pm 1} \right]}} \) for arbitrary m and k. The procedure is not restricted to the fundamental (all antisymmetric) representations and the torus knots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Witten, Quantum Field Theory and the Jones Polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. E. Witten, Analytic Continuation Of Chern-Simons Theory, arXiv:1001.2933 [INSPIRE].

  3. E. Witten, Fivebranes and Knots, arXiv:1101.3216 [INSPIRE].

  4. T. Dimofte, S. Gukov and L. Hollands, Vortex Counting and Lagrangian 3-manifolds, Lett. Math. Phys. 98 (2011) 225 [arXiv:1006.0977] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. M. Aganagic, M. Mariño and C. Vafa, All loop topological string amplitudes from Chern-Simons theory, Commun. Math. Phys. 247 (2004) 467 [hep-th/0206164] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  6. M. Aganagic, A. Klemm, M. Mariño and C. Vafa, The Topological vertex, Commun. Math. Phys. 254 (2005) 425 [hep-th/0305132] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  7. A. Iqbal, C. Kozcaz and C. Vafa, The Refined topological vertex, JHEP 10 (2009) 069 [hep-th/0701156] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. H. Awata and H. Kanno, Refined BPS state counting from Nekrasovs formula and Macdonald functions, Int. J. Mod. Phys. A 24 (2009) 2253 [arXiv:0805.0191] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. I.G. Macdonald, Symmetric functions and Hall polynomials, Second Edition, Oxford University Press, 1995.

  10. S.N.M. Ruijsenaars and H. Schneider, A new class of integrable systems and its relation to solitons, Annals Phys. 170 (1986) 370 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. S.N.M. Ruijsenaars, Complete integrability of relativistic Calogero-Moser systems and elliptic function identities, Commun. Math. Phys. 110 (1987) 191 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. S.N.M. Ruijsenaars, Action angle maps and scattering theory for some finite dimensional integrable systems. 1. The pure soliton case, Commun. Math. Phys. 115 (1988) 127 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. M. Khovanov and L. Rozansky, Matrix factorizations and link homology, Fund. Math. 199 (2008) 1 [math.AG/0401268].

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Khovanov and L. Rozansky, Matrix factorizations and link homology II, Geom. Topol. 12 (2008) 1387 [math.QA/0505056].

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Gukov, A.S. Schwarz and C. Vafa, Khovanov-Rozansky homology and topological strings, Lett. Math. Phys. 74 (2005) 53 [hep-th/0412243] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. N.M. Dunfield, S. Gukov and J. Rasmussen, The Superpolynomial for knot homologies, math/0505662 [INSPIRE].

  17. S. Gukov, A. Iqbal, C. Kozcaz and C. Vafa, Link Homologies and the Refined Topological Vertex, Commun. Math. Phys. 298 (2010) 757 [arXiv:0705.1368] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. J.W. Alexander, Topological invariants of knots and links, Trans. Amer. Math. Soc. 30 (1928) 275.

    Article  MathSciNet  MATH  Google Scholar 

  19. J.H. Conway, An Enumeration of Knots and Links, and Some of Their Algebraic Properties, in Proc. Conf. Computational Problems in Abstract Algebra, Oxford, 1967, J. Leech ed., Pergamon Press, Oxford-New York, 329-358, 1970.

  20. V.F.R. Jones, Index for subfactors, Invent. Math. 72 (1983) 1.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. V.F.R. Jones, A polynomial invariant for links via von Neumann algebras, Bull. AMS 12 (1985) 103.

    Article  MATH  Google Scholar 

  22. V. Jones, Hecke algebra representations of braid groups and link polynomials, Annals Math. 126 (1987) 335 [INSPIRE].

    Article  MATH  Google Scholar 

  23. L. Kauffman, State models and the Jones polynomial, Topology 26 (1987) 395.

    Article  MathSciNet  MATH  Google Scholar 

  24. P. Freyd, D. Yetter, J. Hoste, W.B.R. Lickorish, K. Millet and A. Ocneanu, A new polynomial invariant of knots and links, Bull. AMS 12 (1985) 239.

    Article  MATH  Google Scholar 

  25. J.H. Przytycki and K.P. Traczyk, Invariants of Conway type, Kobe J. Math. 4 (1987) 115.

    MathSciNet  MATH  Google Scholar 

  26. S. Chmutov, S. Duzhin and J. Mostovoy, Introduction to Vassiliev Knot Invariants, arXiv:1103.5628.

  27. J.E. Andersen et al., Problems on invariants of knots and 3-manifolds, math/0406190.

  28. L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. N. Wyllard, A(N-1) conformal Toda field theory correlation functions from conformal N = 2 SU(N) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. A. Mironov and A. Morozov, The Power of Nekrasov Functions, Phys. Lett. B 680 (2009) 188 [arXiv:0908.2190] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  31. A. Mironov and A. Morozov, On AGT relation in the case of U(3), Nucl. Phys. B 825 (2010) 1 [arXiv:0908.2569] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. Y. Terashima and M. Yamazaki, SL(2, \( \mathbb{R} \)) Chern-Simons, Liouville and Gauge Theory on Duality Walls, JHEP 08 (2011) 135 [arXiv:1103.5748] [INSPIRE].

    Article  ADS  Google Scholar 

  33. D. Galakhov, A. Mironov, A. Morozov, A. Smirnov, A. Mironov, et al., Three-dimensional extensions of the Alday-Gaiotto-Tachikawa relation, Theor. Math. Phys. 172 (2012) 939 [arXiv:1104.2589] [INSPIRE].

    Article  Google Scholar 

  34. R. Dijkgraaf and C. Vafa, Toda Theories, Matrix Models, Topological Strings and N = 2 Gauge Systems, arXiv:0909.2453 [INSPIRE].

  35. H. Itoyama, K. Maruyoshi and T. Oota, The Quiver Matrix Model and 2d-4d Conformal Connection, Prog. Theor. Phys. 123 (2010) 957 [arXiv:0911.4244] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  36. T. Eguchi and K. Maruyoshi, Penner Type Matrix Model and Seiberg-Witten Theory, JHEP 02 (2010) 022 [arXiv:0911.4797] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. T. Eguchi and K. Maruyoshi, Seiberg-Witten theory, matrix model and AGT relation, JHEP 07 (2010) 081 [arXiv:1006.0828] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. R. Schiappa and N. Wyllard, An A(r) threesome: Matrix models, 2d CFTs and 4d N = 2 gauge theories, J. Math. Phys. 51 (2010) 082304 [arXiv:0911.5337] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. A. Mironov, A. Morozov and S. Shakirov, Matrix Model Conjecture for Exact BS Periods and Nekrasov Functions, JHEP 02 (2010) 030 [arXiv:0911.5721] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. A. Mironov, A. Morozov and S. Shakirov, Conformal blocks as Dotsenko-Fateev Integral Discriminants, Int. J. Mod. Phys. A 25 (2010) 3173 [arXiv:1001.0563] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  41. M. Aganagic and S. Shakirov, Knot Homology from Refined Chern-Simons Theory, arXiv:1105.5117 [INSPIRE].

  42. E. Guadagnini, M. Martellini and M. Mintchev, Quantum groups, in proceedings of Clausthal 1989, pg. 307-317.

  43. E. Guadagnini, M. Martellini and M. Mintchev, Chern-Simons holonomies and the appearance of quantum groups, Phys. Lett. B 235 (1990) 275 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  44. N.Y. Reshetikhin and V. Turaev, Ribbon graphs and their invariants derived from quantum groups, Commun. Math. Phys. 127 (1990) 1 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. A. Morozov and A. Smirnov, Chern-Simons Theory in the Temporal Gauge and Knot Invariants through the Universal Quantum R-Matrix, Nucl. Phys. B 835 (2010) 284 [arXiv:1001.2003] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. A. Smirnov, Notes on Chern-Simons Theory in the Temporal Gauge, Proceedings of International School of Subnuclar Phys. in Erice, Italy, 2009 [arXiv:0910.5011] [INSPIRE].

  47. M. Rosso and V.F.R. Jones, On the invariants of torus knots derived from quantum groups, J. Knot Theor. Ramif. 2 (1993) 97.

    Article  MathSciNet  MATH  Google Scholar 

  48. X.-S. Lin and H. Zheng, On the Hecke algebras and the colored HOMFLY polynomial, Trans. Amer. Math. Soc. 362 (2010) 1 [math/0601267].

    Article  MathSciNet  MATH  Google Scholar 

  49. S. Stevan, Chern-Simons Invariants of Torus Links, Annales Henri Poincaré 11 (2010) 1201 [arXiv:1003.2861] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. A. Brini, B. Eynard and M. Mariño, Torus knots and mirror symmetry, Annales Henri Poincaré 13 (2012) 1873 [arXiv:1105.2012] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  51. A. Mironov, A. Morozov and A. Morozov, Character expansion for HOMFLY polynomials. II. Fundamental representation. Up to five strands in braid, JHEP 03 (2012) 034 [arXiv:1112.2654] [INSPIRE].

    Article  ADS  Google Scholar 

  52. E. Gorsky, Combinatorial computation of the motivic Poincaré series, Journal of Singularities 3 (2011) 48 [arXiv:0807.0491].

    Article  MathSciNet  Google Scholar 

  53. A. Mironov, A. Morozov and S. Natanzon, Complete Set of Cut-and-Join Operators in Hurwitz-Kontsevich Theory, Theor. Math. Phys. 166 (2011) 1 [arXiv:0904.4227] [INSPIRE].

    Article  Google Scholar 

  54. A. Mironov, A. Morozov and S. Natanzon, Algebra of differential operators associated with Young diagrams, J. Geom. Phys. 62 (2012) 148 [arXiv:1012.0433] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. A. Morozov and S. Shakirov, Generation of Matrix Models by W-operators, JHEP 04 (2009) 064 [arXiv:0902.2627] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  56. A. Morozov and S. Shakirov, On Equivalence of two Hurwitz Matrix Models, Mod. Phys. Lett. A 24 (2009) 2659 [arXiv:0906.2573] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  57. G. Borot, B. Eynard, M. Mulase and B. Safnuk, A Matrix model for simple Hurwitz numbers and topological recursion, J. Geom. Phys. 61 (2011) 522 [arXiv:0906.1206] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. A. Alexandrov, Matrix Models for Random Partitions, Nucl. Phys. B 851 (2011) 620 [arXiv:1005.5715] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. H. Awata and H. Kanno, Changing the preferred direction of the refined topological vertex, J. Geom. Phys. 64 (2013) 91 [arXiv:0903.5383] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. H. Awata and H. Kanno, Macdonald operators and homological invariants of the colored Hopf link, J. Phys. A 44 (2011) 375201 [arXiv:0910.0083] [INSPIRE].

    MathSciNet  Google Scholar 

  61. E. Gorsky, q, t-Catalan numbers and knot homology, arXiv:1003.0916.

  62. S. Gukov and P. Sulkowski, A-polynomial, B-model and Quantization, JHEP 02 (2012) 070 [arXiv:1108.0002] [INSPIRE].

    Article  ADS  Google Scholar 

  63. N. Carqueville and D. Murfet, Computing Khovanov-Rozansky homology and defect fusion, arXiv:1108.1081 [INSPIRE].

  64. I. Cherednik, Jones polynomials of torus knots via DAHA, arXiv:1111.6195 [INSPIRE].

  65. S. Shakirov, β-Deformation and Superpolynomials of (n,m) Torus Knots, arXiv:1111.7035 [INSPIRE].

  66. S. Gukov and M. Stosic, Homological Algebra of Knots and BPS States, arXiv:1112.0030 [INSPIRE].

  67. A. Oblomkov, J. Rasmussen and V. Shende, The Hilbert scheme of a plane curve singularity and the HOMFLY homology of its link, arXiv:1201.2115 [INSPIRE].

  68. A. Mironov, A. Morozov, S. Shakirov and A. Sleptsov, Interplay between MacDonald and Hall-Littlewood expansions of extended torus superpolynomials, JHEP 05 (2012) 070 [arXiv:1201.3339] [INSPIRE].

    Article  ADS  Google Scholar 

  69. A. Mironov, A. Morozov and S. Shakirov, Torus HOMFLY as the Hall-Littlewood Polynomials, J. Phys. A 45 (2012) 355202 [arXiv:1203.0667] [INSPIRE].

    MathSciNet  Google Scholar 

  70. H. Fuji, S. Gukov, P. Sulkowski and H. Awata, Volume Conjecture: Refined and Categorified, arXiv:1203.2182 [INSPIRE].

  71. H. Itoyama, A. Mironov, A. Morozov and A. Morozov, HOMFLY and superpolynomials for figure eight knot in all symmetric and antisymmetric representations, JHEP 07 (2012) 131 [arXiv:1203.5978] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  72. H. Fuji, S. Gukov and P. Sulkowski, Super-A-polynomial for knots and BPS states, Nucl. Phys. B 867 (2013) 506 [arXiv:1205.1515] [INSPIRE].

    Article  ADS  Google Scholar 

  73. A. Mironov, A. Morozov and A. Morozov, Character expansion for HOMFLY polynomials. I. Integrability and difference equations, arXiv:1112.5754 [INSPIRE].

  74. A. Mironov, A. Morozov, A. Sleptsov and A.Smirnov, to appear.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mironov.

Additional information

ArXiv ePrint: 1106.4305

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunin-Barkowski, P., Mironov, A., Morozov, A. et al. Superpolynomials for torus knots from evolution induced by cut-and-join operators. J. High Energ. Phys. 2013, 21 (2013). https://doi.org/10.1007/JHEP03(2013)021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2013)021

Keywords

Navigation