Skip to main content
Log in

125 GeV Higgs boson and the type-II seesaw model

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the vacuum stability and unitarity conditions for a 125 GeV Standard Model (SM)-like Higgs boson mass in the type-II seesaw model. We find that, as long as the seesaw scale is introduced below the SM vacuum instability bound, there exists a large parameter space predicting a 125 GeV Higgs mass, irrespective of the exact value of the seesaw scale, satisfying both stability and unitarity conditions up to the Planck scale. We also study the model predictions for the Higgs partial decay widths in the diphoton and Z+photon channels with respect to their SM expectations and find that the decay rates for these two processes are anti-correlated. We further show that for any given enhancement in the Higgs-to-diphoton rate over its SM expectation, there exists an upper bound on the type-II seesaw scale, and hence, on the masses of the associated doubly- and singly-charged Higgs bosons in the allowed parameter space. For instance, if more than 10% enhancement persists in the Higgs-to-diphoton channel, the upper limit on the type-II seesaw scale is about 450 GeV which is completely within the reach of the 14 TeV LHC. We believe this to be an encouraging result for the experimental searches of the singly- and doubly-charged Higgs bosons which, in combination with improved sensitivity in the Higgs-to-diphoton and Higgs-to-Z+photon channels, could probe the entire allowed parameter space of the minimal type-II seesaw model, and establish/eliminate it as a single viable extension of the SM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. Tevatron New Physics Higgs Working Group, CDF Collaboration, D0 collaboration, C. Group, D. Collaborations, the Tevatron New Physics and H. Working, Updated combination of CDF and D0 searches for standard model Higgs boson production with up to 10.0 fb −1 of data, arXiv:1207.0449 [INSPIRE].

  4. ATLAS collaboration, An update of combined measurements of the new Higgs-like boson with high mass resolution channels, ATLAS-CONF-2012-170 (2012).

  5. CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-12-045 (1494149).

  6. ATLAS collaboration, Observation and study of the Higgs boson candidate in the two photon decay channel with the ATLAS detector at the LHC, ATLAS-CONF-2012-168 (2012).

  7. CMS collaboration, Evidence for a new state decaying into two photons in the search for the standard model Higgs boson in pp collisions, CMS-PAS-HIG-12-015 (1460419).

  8. A. Djouadi, The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].

    Article  ADS  Google Scholar 

  9. A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].

    Article  ADS  Google Scholar 

  10. G. Degrassi, S. Di Vita, J. Elias-Miro, J.R. Espinosa, G.F. Giudice et al., Higgs mass and vacuum stability in the standard model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

    Article  ADS  Google Scholar 

  11. J. Ellis, J. Espinosa, G. Giudice, A. Hoecker and A. Riotto, The probable fate of the standard model, Phys. Lett. B 679 (2009) 369 [arXiv:0906.0954] [INSPIRE].

    Article  ADS  Google Scholar 

  12. M. Holthausen, K.S. Lim and M. Lindner, Planck scale boundary conditions and the Higgs mass, JHEP 02 (2012) 037 [arXiv:1112.2415] [INSPIRE].

    Article  ADS  Google Scholar 

  13. J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Riotto et al., Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].

    Article  ADS  Google Scholar 

  14. F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs boson mass and new physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].

    Article  ADS  Google Scholar 

  15. S. Alekhin, A. Djouadi and S. Moch, The top quark and Higgs boson masses and the stability of the electroweak vacuum, Phys. Lett. B 716 (2012) 214 [arXiv:1207.0980] [INSPIRE].

    Article  ADS  Google Scholar 

  16. I. Masina, The Higgs boson and top quark masses as tests of electroweak vacuum stability, arXiv:1209.0393 [INSPIRE].

  17. M. Gonzalez-Garcia and M. Maltoni, Phenomenology with massive neutrinos, Phys. Rept. 460 (2008) 1 [arXiv:0704.1800] [INSPIRE].

    Article  ADS  Google Scholar 

  18. R. Mohapatra and A. Smirnov, Neutrino mass and new physics, Ann. Rev. Nucl. Part. Sci. 56 (2006) 569 [hep-ph/0603118] [INSPIRE].

    Article  ADS  Google Scholar 

  19. S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].

    Article  ADS  Google Scholar 

  20. E. Ma, Pathways to naturally small neutrino masses, Phys. Rev. Lett. 81 (1998) 1171 [hep-ph/9805219] [INSPIRE].

    Article  ADS  Google Scholar 

  21. P. Minkowski, μeγ at a rate of one out of 1 billion muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

    Article  ADS  Google Scholar 

  22. T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, in the proceedings of the Workshop on Unified Theories, KEK Report 79-18 (1979) 95.

  23. M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, P. van Nieuwenhuizen and D.Z. Freedman eds., North Holland, Amsterdam The Netherlands (1979) 315.

  24. R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].

    Article  ADS  Google Scholar 

  25. J. Schechter and J. Valle, Neutrino masses in SU(2)× U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].

    ADS  Google Scholar 

  26. J. Casas, V. Di Clemente, A. Ibarra and M. Quirós, Massive neutrinos and the Higgs mass window, Phys. Rev. D 62 (2000) 053005 [hep-ph/9904295] [INSPIRE].

    ADS  Google Scholar 

  27. I. Gogoladze, N. Okada and Q. Shafi, Higgs boson mass bounds in the standard model with type III and type I seesaw, Phys. Lett. B 668 (2008) 121 [arXiv:0805.2129] [INSPIRE].

    Article  ADS  Google Scholar 

  28. C.-S. Chen and Y. Tang, Vacuum stability, neutrinos and dark matter, JHEP 04 (2012) 019 [arXiv:1202.5717] [INSPIRE].

    Article  ADS  Google Scholar 

  29. W. Rodejohann and H. Zhang, Impact of massive neutrinos on the Higgs self-coupling and electroweak vacuum stability, JHEP 06 (2012) 022 [arXiv:1203.3825] [INSPIRE].

    Article  ADS  Google Scholar 

  30. J. Chakrabortty, M. Das and S. Mohanty, Constraints on TeV scale Majorana neutrino phenomenology from the vacuum stability of the Higgs, arXiv:1207.2027 [INSPIRE].

  31. ATLAS collaboration, Search for Majorana neutrino production in pp collisions at \( \sqrt{s}=7 \) TeV indimuonfinalstateswiththeATLASdetector, ATLAS-CONF-2012-139 (2012).

  32. CMS collaboration, Search for heavy Majorana neutrinos in μ + μ +[μ μ ] and e + e +[e e ] events in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 717 (2012) 109 [arXiv:1207.6079] [INSPIRE].

    ADS  Google Scholar 

  33. M. Magg and C. Wetterich, Neutrino mass problem and gauge hierarchy, Phys. Lett. B 94 (1980) 61 [INSPIRE].

    Article  ADS  Google Scholar 

  34. T. Cheng and L.-F. Li, Neutrino masses, mixings and oscillations in SU(2)× U(1) models of electroweak interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE].

    ADS  Google Scholar 

  35. G. Lazarides, Q. Shafi and C. Wetterich, Proton lifetime and fermion masses in an SO(10) model, Nucl. Phys. B 181 (1981) 287 [INSPIRE].

    Article  ADS  Google Scholar 

  36. R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].

    ADS  Google Scholar 

  37. I. Gogoladze, N. Okada and Q. Shafi, Higgs boson mass bounds in a type-II seesaw model with triplet scalars, Phys. Rev. D 78 (2008) 085005 [arXiv:0802.3257] [INSPIRE].

    ADS  Google Scholar 

  38. A. Arhrib, R. Benbrik, M. Chabab, G. Moultaka, M. Peyranere et al., The Higgs potential in the type II seesaw model, Phys. Rev. D 84 (2011) 095005 [arXiv:1105.1925] [INSPIRE].

    ADS  Google Scholar 

  39. C. Arina, J.-O. Gong and N. Sahu, Unifying darko-lepto-genesis with scalar triplet inflation, Nucl. Phys. B 865 (2012) 430 [arXiv:1206.0009] [INSPIRE].

    Article  ADS  Google Scholar 

  40. E.J. Chun, H.M. Lee and P. Sharma, Vacuum stability, perturbativity, EWPD and Higgs-to-diphoton rate in type II seesaw models, JHEP 11 (2012) 106 [arXiv:1209.1303] [INSPIRE].

    Article  ADS  Google Scholar 

  41. W. Chao, M. Gonderinger and M.J. Ramsey-Musolf, Higgs vacuum stability, neutrino mass and dark matter, Phys. Rev. D 86 (2012) 113017 [arXiv:1210.0491] [INSPIRE].

    ADS  Google Scholar 

  42. M. Aoki, S. Kanemura, M. Kikuchi and K. Yagyu, Radiative corrections to the Higgs boson couplings in the triplet model, Phys. Rev. D 87 (2013) 015012 [arXiv:1211.6029] [INSPIRE].

    ADS  Google Scholar 

  43. F. Arbabifar, S. Bahrami and M. Frank, Neutral Higgs bosons in the Higgs triplet model with nontrivial mixing, Phys. Rev. D 87 (2013) 015020 [arXiv:1211.6797] [INSPIRE].

    ADS  Google Scholar 

  44. P. Fileviez Perez, T. Han, G.-Y. Huang, T. Li and K. Wang, Neutrino masses and the CERN LHC: testing type II seesaw, Phys. Rev. D 78 (2008) 015018 [arXiv:0805.3536] [INSPIRE].

    ADS  Google Scholar 

  45. A. Melfo, M. Nemevšek, F. Nesti, G. Senjanović and Y. Zhang, Type II seesaw at LHC: the roadmap, Phys. Rev. D 85 (2012) 055018 [arXiv:1108.4416] [INSPIRE].

    ADS  Google Scholar 

  46. ATLAS collaboration, Search for doubly-charged Higgs bosons in like-sign dilepton final states at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Eur. Phys. J. C 72 (2012) 2244 [arXiv:1210.5070] [INSPIRE].

    Article  ADS  Google Scholar 

  47. CMS collaboration, Inclusive search for doubly charged Higgs in leptonic final states with the 2011 data at 7 TeV, CMS-PAS-HIG-12-005 (2012).

  48. R. Foot, H. Lew, X. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [INSPIRE].

    Google Scholar 

  49. B. He, N. Okada and Q. Shafi, 125 GeV Higgs, type III seesaw and gauge-Higgs unification, Phys. Lett. B 716 (2012) 197 [arXiv:1205.4038] [INSPIRE].

    Article  ADS  Google Scholar 

  50. S. Khan, S. Goswami and S. Roy, Vacuum stability constraints on the minimal singlet TeV seesaw model, arXiv:1212.3694 [INSPIRE].

  51. P. Nath, B.D. Nelson, H. Davoudiasl, B. Dutta, D. Feldman et al., The hunt for new physics at the large hadron collider, Nucl. Phys. Proc. Suppl. 200-202 (2010) 185 [arXiv:1001.2693] [INSPIRE].

    Article  Google Scholar 

  52. P. Dey, A. Kundu and B. Mukhopadhyaya, Some consequences of a Higgs triplet, J. Phys. G 36 (2009) 025002 [arXiv:0802.2510] [INSPIRE].

    Article  ADS  Google Scholar 

  53. A. Akeroyd and C.-W. Chiang, Phenomenology of large mixing for the CP-even neutral scalars of the Higgs triplet model, Phys. Rev. D 81 (2010) 115007 [arXiv:1003.3724] [INSPIRE].

    ADS  Google Scholar 

  54. S. Kanemura and K. Yagyu, Radiative corrections to electroweak parameters in the Higgs triplet model and implication with the recent Higgs boson searches, Phys. Rev. D 85 (2012) 115009 [arXiv:1201.6287] [INSPIRE].

    ADS  Google Scholar 

  55. M. Aoki, S. Kanemura, M. Kikuchi and K. Yagyu, Renormalization of the Higgs sector in the triplet model, Phys. Lett. B 714 (2012) 279 [arXiv:1204.1951] [INSPIRE].

    Article  ADS  Google Scholar 

  56. A. Arhrib, R. Benbrik, M. Chabab, G. Moultaka and L. Rahili, Higgs boson decay into 2 photons in the type II seesaw model, JHEP 04 (2012) 136 [arXiv:1112.5453] [INSPIRE].

    Article  ADS  Google Scholar 

  57. M. Carena, I. Low and C.E. Wagner, Implications of a modified Higgs to diphoton decay width, JHEP 08 (2012) 060 [arXiv:1206.1082] [INSPIRE].

    Article  ADS  Google Scholar 

  58. A. Djouadi, V. Driesen, W. Hollik and A. Kraft, The Higgs photon - Z boson coupling revisited, Eur. Phys. J. C 1 (1998) 163 [hep-ph/9701342] [INSPIRE].

    ADS  Google Scholar 

  59. A. Akeroyd and S. Moretti, Enhancement of H to γγ from doubly charged scalars in the Higgs triplet model, Phys. Rev. D 86 (2012) 035015 [arXiv:1206.0535] [INSPIRE].

    ADS  Google Scholar 

  60. W.-F. Chang, J.N. Ng and J.M. Wu, Constraints on new scalars from the LHC 125 GeV Higgs signal, Phys. Rev. D 86 (2012) 033003 [arXiv:1206.5047] [INSPIRE].

    ADS  Google Scholar 

  61. C.-W. Chiang and K. Yagyu, Testing the custodial symmetry in the Higgs sector of the Georgi-Machacek model, JHEP 01 (2013) 026 [arXiv:1211.2658] [INSPIRE].

    Article  ADS  Google Scholar 

  62. E. Accomando, A. Akeroyd, E. Akhmetzyanova, J. Albert, A. Alves et al., Workshop on CP studies and non-standard Higgs physics, hep-ph/0608079 [INSPIRE].

  63. A.G. Akeroyd, M. Aoki and H. Sugiyama, Phenomenology of the Higgs triplet model, in The Large Hadron Collider and Higgs boson research, C.J. Hong ed., Nova Publishers, New York U.S.A. (2012) 169.

  64. M.A. Schmidt, Renormalization group evolution in the type-I+ II seesaw model, Phys. Rev. D 76 (2007) 073010 [Erratum ibid. D 85 (2012) 099903] [arXiv:0705.3841] [INSPIRE].

    ADS  Google Scholar 

  65. Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  66. D. Forero, M. Tortola and J. Valle, Global status of neutrino oscillation parameters after Neutrino-2012, Phys. Rev. D 86 (2012) 073012 [arXiv:1205.4018] [INSPIRE].

    ADS  Google Scholar 

  67. M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 1. Wave function renormalization, Nucl. Phys. B 222 (1983) 83 [INSPIRE].

    Article  ADS  Google Scholar 

  68. M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 2. Yukawa couplings, Nucl. Phys. B 236 (1984) 221 [INSPIRE].

    Article  ADS  Google Scholar 

  69. M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 3. Scalar quartic couplings, Nucl. Phys. B 249 (1985) 70 [INSPIRE].

    Article  ADS  Google Scholar 

  70. C. Ford, I. Jack and D. Jones, The standard model effective potential at two loops, Nucl. Phys. B 387 (1992) 373 [Erratum ibid. B 504 (1997) 551-552] [hep-ph/0111190] [INSPIRE].

    Article  ADS  Google Scholar 

  71. H. Arason, D. Castano, B. Keszthelyi, S. Mikaelian, E. Piard et al., Renormalization group study of the standard model and its extensions. 1. The standard model, Phys. Rev. D 46 (1992) 3945 [INSPIRE].

    ADS  Google Scholar 

  72. M.-x. Luo and Y. Xiao, Two loop renormalization group equations in the standard model, Phys. Rev. Lett. 90 (2003) 011601 [hep-ph/0207271] [INSPIRE].

    Article  ADS  Google Scholar 

  73. A. Sirlin and R. Zucchini, Dependence of the quartic coupling h M on m H and the possible onset of new physics in the Higgs sector of the standard model, Nucl. Phys. B 266 (1986) 389 [INSPIRE].

    Article  ADS  Google Scholar 

  74. N. Gray, D.J. Broadhurst, W. Grafe and K. Schilcher, Three loop relation of quark (modified) MS and pole masses, Z. Phys. C 48 (1990) 673 [INSPIRE].

    ADS  Google Scholar 

  75. J. Fleischer, F. Jegerlehner, O. Tarasov and O. Veretin, Two loop QCD corrections of the massive fermion propagator, Nucl. Phys. B 539 (1999) 671 [Erratum ibid. B 571 (2000) 511-512] [hep-ph/9803493] [INSPIRE].

    Article  ADS  Google Scholar 

  76. K. Chetyrkin and M. Steinhauser, The relation between the MS-bar and the on-shell quark mass at order \( \alpha_s^3 \), Nucl. Phys. B 573 (2000) 617 [hep-ph/9911434] [INSPIRE].

    Article  ADS  Google Scholar 

  77. K. Melnikov and T.v. Ritbergen, The three loop relation between the MS-bar and the pole quark masses, Phys. Lett. B 482 (2000) 99 [hep-ph/9912391] [INSPIRE].

    Article  ADS  Google Scholar 

  78. R. Hempfling and B.A. Kniehl, On the relation between the fermion pole mass and MS Yukawa coupling in the standard model, Phys. Rev. D 51 (1995) 1386 [hep-ph/9408313] [INSPIRE].

    ADS  Google Scholar 

  79. F. Jegerlehner and M.Y. Kalmykov, O(ααs) correction to the pole mass of the t quark within the standard model, Nucl. Phys. B 676 (2004) 365 [hep-ph/0308216] [INSPIRE].

    Article  ADS  Google Scholar 

  80. W. Chao and H. Zhang, One-loop renormalization group equations of the neutrino mass matrix in the triplet seesaw model, Phys. Rev. D 75 (2007) 033003 [hep-ph/0611323] [INSPIRE].

    ADS  Google Scholar 

  81. A. Akeroyd, M. Aoki and H. Sugiyama, Lepton flavour violating decays \( \tau \to \overline{l}ll \) and μeγ in the Higgs triplet model, Phys. Rev. D 79 (2009) 113010 [arXiv:0904.3640] [INSPIRE].

    ADS  Google Scholar 

  82. T. Fukuyama, H. Sugiyama and K. Tsumura, Constraints from muon g − 2 and LFV processes in the Higgs triplet model, JHEP 03 (2010) 044 [arXiv:0909.4943] [INSPIRE].

    Article  ADS  Google Scholar 

  83. ATLAS collaboration, Search for charged Higgs bosons decaying via H + → τ ν in top quark pair events using pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 06 (2012) 039 [arXiv:1204.2760] [INSPIRE].

    ADS  Google Scholar 

  84. ATLAS collaboration, Search for charged Higgs bosons through the violation of lepton universality in tt events using pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS experiment, arXiv:1212.3572 [INSPIRE].

  85. CMS collaboration, Search for a light charged Higgs boson in top quark decays in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 07 (2012) 143 [arXiv:1205.5736] [INSPIRE].

    ADS  Google Scholar 

  86. ATLAS collaboration, Combined search for the standard model Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. D 86 (2012) 032003 [arXiv:1207.0319] [INSPIRE].

    ADS  Google Scholar 

  87. CMS collaboration, Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].

    ADS  Google Scholar 

  88. LEP Higgs Working Group for Higgs boson searches, ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL Collaboration collaboration, Search for charged Higgs bosons: preliminary combined results using LEP data collected at energies up to 209 GeV, hep-ex/0107031 [INSPIRE].

  89. L. Lavoura and L.-F. Li, Making the small oblique parameters large, Phys. Rev. D 49 (1994) 1409 [hep-ph/9309262] [INSPIRE].

    ADS  Google Scholar 

  90. E. Ma and U. Sarkar, Neutrino masses and leptogenesis with heavy Higgs triplets, Phys. Rev. Lett. 80 (1998) 5716 [hep-ph/9802445] [INSPIRE].

    Article  ADS  Google Scholar 

  91. T. Hambye, Leptogenesis: beyond the minimal type-I seesaw scenario, New J. Phys. 14 (2012) 125014 [arXiv:1212.2888] [INSPIRE].

    Article  ADS  Google Scholar 

  92. C.-S. Chen and C.-M. Lin, Type II seesaw Higgs triplet as the inflaton for chaotic inflation and leptogenesis, Phys. Lett. B 695 (2011) 9 [arXiv:1009.5727] [INSPIRE].

    Article  ADS  Google Scholar 

  93. S. Kanemura and H. Sugiyama, Dark matter and a suppression mechanism for neutrino masses in the Higgs triplet model, Phys. Rev. D 86 (2012) 073006 [arXiv:1202.5231] [INSPIRE].

    ADS  Google Scholar 

  94. L. Wang and X.-F. Han, 130 GeV gamma-ray line and enhancement of H → γγ in the Higgs triplet model plus a scalar dark matter, Phys. Rev. D 87 (2013) 015015 [arXiv:1209.0376] [INSPIRE].

    ADS  Google Scholar 

  95. J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A phenomenological profile of the Higgs boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].

    ADS  Google Scholar 

  96. M.A. Shifman, A. Vainshtein, M. Voloshin and V.I. Zakharov, Low-energy theorems for Higgs boson couplings to photons, Sov. J. Nucl. Phys. 30 (1979) 711 [INSPIRE].

    Google Scholar 

  97. J. Baglio, A. Djouadi and R. Godbole, The apparent excess in the Higgs to di-photon rate at the LHC: new physics or QCD uncertainties?, Phys. Lett. B 716 (2012) 203 [arXiv:1207.1451] [INSPIRE].

    Article  ADS  Google Scholar 

  98. M. Spira, QCD effects in Higgs physics, Fortsch. Phys. 46 (1998) 203 [hep-ph/9705337] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  99. J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunters guide, Front. Phys. 80 (2000) 1.

    Google Scholar 

  100. R. Cahn, M.S. Chanowitz and N. Fleishon, Higgs particle production by ZHγ, Phys. Lett. B 82 (1979) 113 [INSPIRE].

    Article  ADS  Google Scholar 

  101. L. Bergstrom and G. Hulth, Induced Higgs couplings to neutral bosons in e + e collisions, Nucl. Phys. B 259 (1985) 137 [Erratum ibid. B 276 (1986) 744] [INSPIRE].

    Article  ADS  Google Scholar 

  102. LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 1. Inclusive observables, arXiv:1101.0593 [INSPIRE].

  103. CMS collaboration, Search for a light Higgs boson in the Z boson plus a photon decay channel, CMS-PAS-HIG-12-049 (2012).

  104. B. Schrempp and M. Wimmer, Top quark and Higgs boson masses: interplay between infrared and ultraviolet physics, Prog. Part. Nucl. Phys. 37 (1996) 1 [hep-ph/9606386] [INSPIRE].

    Article  ADS  Google Scholar 

  105. CDF Collaboration, D0 collaboration, T. Aaltonen et al., Combination of the top-quark mass measurements from the Tevatron collider, Phys. Rev. D 86 (2012) 092003 [arXiv:1207.1069] [INSPIRE].

    ADS  Google Scholar 

  106. ATLAS collaboration, Combination of ATLAS and CMS results on the mass of the top quark using up to 4.9 fb −1 of data, ATLAS-CONF-2012-095 (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Bhupal Dev.

Additional information

ArXiv ePrint: 1301.3453

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dev, P.S.B., Ghosh, D.K., Okada, N. et al. 125 GeV Higgs boson and the type-II seesaw model. J. High Energ. Phys. 2013, 150 (2013). https://doi.org/10.1007/JHEP03(2013)150

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2013)150

Keywords

Navigation