Skip to main content
Log in

Asymmetric orbifolds, non-geometric fluxes and non-commutativity in closed string theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In this paper we consider a class of exactly solvable closed string flux backgrounds that exhibit non-commutativity in the closed string coordinates. They are realized in terms of freely-acting asymmetric ℤ N -orbifolds, which are themselves close relatives of twisted torus fibrations with elliptic ℤ N -monodromy (elliptic T-folds). We explicitly construct the modular invariant partition function of the models and derive the non-commutative algebra in the string coordinates, which is exact to all orders in α′. Finally, we relate these asymmetric orbifold spaces to inherently stringy Scherk-Schwarz backgrounds and non-geometric fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.-S. Chu and P.-M. Ho, Noncommutative open string and D-brane, Nucl. Phys. B 550 (1999) 151 [hep-th/9812219] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. V. Schomerus, D-branes and deformation quantization, JHEP 06 (1999) 030 [hep-th/9903205] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. F. Ardalan, H. Arfaei and M. Sheikh-Jabbari, Mixed branes and M(atrix) theory on noncommutative torus, hep-th/9803067 [INSPIRE].

  5. F. Ardalan, H. Arfaei and M. Sheikh-Jabbari, Noncommutative geometry from strings and branes, JHEP 02 (1999) 016 [hep-th/9810072] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. F. Ardalan, H. Arfaei and M. Sheikh-Jabbari, Dirac quantization of open strings and noncommutativity in branes, Nucl. Phys. B 576 (2000) 578 [hep-th/9906161] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. D. Lüst, T-duality and closed string non-commutative (doubled) geometry, JHEP 12 (2010) 084 [arXiv:1010.1361] [INSPIRE].

    Article  Google Scholar 

  8. R. Blumenhagen and E. Plauschinn, Nonassociative gravity in string theory?, J. Phys. A A 44 (2011) 015401 [arXiv:1010.1263] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. R. Blumenhagen, A. Deser, D. Lüst, E. Plauschinn and F. Rennecke, Non-geometric fluxes, asymmetric strings and nonassociative geometry, J. Phys. A 44 (2011) L5401 [arXiv:1106.0316].

    ADS  Google Scholar 

  10. R. Blumenhagen, Nonassociativity in string theory, arXiv:1112.4611 [INSPIRE].

  11. C. Hull, A geometry for non-geometric string backgrounds, JHEP 10 (2005) 065 [hep-th/0406102] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. J. Shelton, W. Taylor and B. Wecht, Nongeometric flux compactifications, JHEP 10 (2005) 085 [hep-th/0508133] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. A. Dabholkar and C. Hull, Generalised T-duality and non-geometric backgrounds, JHEP 05 (2006) 009 [hep-th/0512005] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. D. Andriot, M. Larfors, D. Lüst and P. Patalong, A ten-dimensional action for non-geometric fluxes, JHEP 09 (2011) 134 [arXiv:1106.4015] [INSPIRE].

    Article  ADS  Google Scholar 

  16. D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, A geometric action for non-geometric fluxes, arXiv:1202.3060 [INSPIRE].

  17. E. Kiritsis and C. Kounnas, Dynamical topology change, compactification and waves in string cosmology, Nucl. Phys. Proc. Suppl. 41 (1995) 311 [gr-qc/9701005] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. E. Kiritsis and C. Kounnas, String gravity and cosmology: some new ideas, in Trieste 1995, 1st International Four Seas conference (1995) 165 [gr-qc/9509017] [INSPIRE].

  19. K. Narain, M. Sarmadi and C. Vafa, Asymmetric orbifolds, Nucl. Phys. B 288 (1987) 551 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. K. Narain, M. Sarmadi and C. Vafa, Asymmetric orbifolds: path integral and operator formulations, Nucl. Phys. B 356 (1991) 163 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. J. Scherk and J.H. Schwarz, Spontaneous breaking of supersymmetry through dimensional reduction, Phys. Lett. B 82 (1979) 60 [INSPIRE].

    ADS  Google Scholar 

  22. J. Scherk and J.H. Schwarz, How to get masses from extra dimensions, Nucl. Phys. B 153 (1979)61 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. B. Wecht, Lectures on nongeometric flux compactifications, Class. Quant. Grav. 24 (2007) 773 [arXiv:0708.3984].

    Article  MathSciNet  ADS  Google Scholar 

  24. A. Flournoy, B. Wecht and B. Williams, Constructing nongeometric vacua in string theory, Nucl. Phys. B 706 (2005) 127 [hep-th/0404217] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. A. Flournoy and B. Williams, Nongeometry, duality twists and the worldsheet, JHEP 01 (2006) 166 [hep-th/0511126] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. T. Buscher, A symmetry of the string background field equations, Phys. Lett. B 194 (1987) 59 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  27. M. Roček and E.P. Verlinde, Duality, quotients and currents, Nucl. Phys. B 373 (1992) 630 [hep-th/9110053] [INSPIRE].

    ADS  Google Scholar 

  28. A. Giveon and M. Roček, Generalized duality in curved string backgrounds, Nucl. Phys. B 380 (1992) 128 [hep-th/9112070] [INSPIRE].

    Article  ADS  Google Scholar 

  29. A. Giveon, M. Porrati and E. Rabinovici, Target space duality in string theory, Phys. Rept. 244 (1994) 77 [hep-th/9401139] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. C. Hull, Global aspects of T-duality gauged σ-models and T-folds, JHEP 10 (2007) 057 [hep-th/0604178] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. A. Dabholkar and C. Hull, Duality twists, orbifolds and fluxes, JHEP 09 (2003) 054 [hep-th/0210209] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. C. Hull and R. Reid-Edwards, Flux compactifications of string theory on twisted tori, Fortsch. Phys. 57 (2009) 862 [hep-th/0503114] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. K. Aoki, E. D’Hoker and D. Phong, On the construction of asymmetric orbifold models, Nucl. Phys. B 695 (2004) 132 [hep-th/0402134] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. N.J. Hitchin, The geometry of three forms in six-dimensions and seven-dimensions, J. Diff. Geom. 55 (2000) 547 [math/0010054] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  35. N.J. Hitchin, Stable forms and special metrics, math/0107101 [INSPIRE].

  36. N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. Oxford Ser. 54 (2003) 281 [math/0209099] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Gualtieri, Generalized complex geometry, D. Phil. Thesis, Oxford University, Oxford U.K. (2004) [math/0401221] [INSPIRE].

  38. S. Ferrara, C. Kounnas and M. Porrati, N = 1 superstrings with spontaneously broken symmetries, Phys. Lett. B 206 (1988) 25 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  39. C. Kounnas and M. Porrati, Spontaneous supersymmetry breaking in string theory, Nucl. Phys. B 310 (1988) 355 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. S. Ferrara, C. Kounnas, M. Porrati and F. Zwirner, Superstrings with spontaneously broken supersymmetry and their effective theories, Nucl. Phys. B 318 (1989) 75 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. C. Kounnas and B. Rostand, Coordinate dependent compactifications and discrete symmetries, Nucl. Phys. B 341 (1990) 641 [INSPIRE].

    Article  ADS  Google Scholar 

  42. I. Antoniadis, G. D’Appollonio, E. Dudas and A. Sagnotti, Partial breaking of supersymmetry, open strings and M-theory, Nucl. Phys. B 553 (1999) 133 [hep-th/9812118] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. I. Antoniadis, E. Dudas and A. Sagnotti, Supersymmetry breaking, open strings and M-theory, Nucl. Phys. B 544 (1999) 469 [hep-th/9807011] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. E. Kiritsis and C. Kounnas, Perturbative and nonperturbative partial supersymmetry breaking: N = 4 → N = 2 → N = 1, Nucl. Phys. B 503 (1997) 117 [hep-th/9703059] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. I. Antoniadis, C. Bachas, C. Kounnas and P. Windey, Supersymmetry among free fermions and superstrings, Phys. Lett. B 171 (1986) 51 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  46. I. Antoniadis, C. Bachas and C. Kounnas, Four-dimensional superstrings, Nucl. Phys. B 289 (1987) 87 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. C. Angelantonj, R. Blumenhagen and M.R. Gaberdiel, Asymmetric orientifolds, brane supersymmetry breaking and nonBPS branes, Nucl. Phys. B 589 (2000) 545 [hep-th/0006033] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. R. Blumenhagen, L. Görlich, B. Körs and D. Lüst, Asymmetric orbifolds, noncommutative geometry and type-I string vacua, Nucl. Phys. B 582 (2000) 44 [hep-th/0003024] [INSPIRE].

    Article  ADS  Google Scholar 

  49. M. Melvin, Pure magnetic and electric geons, Phys. Lett. 8 (1964) 65 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. G.W. Gibbons and K.-i. Maeda, Black holes in an expanding universe, Phys. Rev. Lett. 104 (2010) 131101 [arXiv:0912.2809] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. J. Russo and A.A. Tseytlin, Constant magnetic field in closed string theory: an exactly solvable model, Nucl. Phys. B 448 (1995) 293 [hep-th/9411099] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. J. Russo and A.A. Tseytlin, Exactly solvable string models of curved space-time backgrounds, Nucl. Phys. B 449 (1995) 91 [hep-th/9502038] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. J. Russo and A.A. Tseytlin, Heterotic strings in uniform magnetic field, Nucl. Phys. B 454 (1995) 164 [hep-th/9506071] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. M. Serone and M. Trapletti, String vacua with flux from freely acting obifolds, JHEP 01 (2004) 012 [hep-th/0310245] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Florakis.

Additional information

ArXiv ePrint: 1202.6366

Rights and permissions

Reprints and permissions

About this article

Cite this article

Condeescu, C., Florakis, I. & Lüst, D. Asymmetric orbifolds, non-geometric fluxes and non-commutativity in closed string theory. J. High Energ. Phys. 2012, 121 (2012). https://doi.org/10.1007/JHEP04(2012)121

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2012)121

Keywords

Navigation