Skip to main content
Log in

Bounds on 4D conformal and superconformal field theories

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We derive general bounds on operator dimensions, central charges, and OPE coefficients in 4D conformal and \( \mathcal{N} = 1 \) superconformal field theories. In any CFT containing a scalar primary ϕ of dimension d we show that crossing symmetry of \( \left\langle {\phi \phi \phi \phi } \right\rangle \) implies a completely general lower bound on the central charge cf c (d). Similarly, in CFTs containing a complex scalar charged under global symmetries, we bound a combination of symmetry current two-point function coefficients τ IJ and flavor charges. We extend these bounds to \( \mathcal{N} = 1 \) superconformal theories by deriving the superconformal block expansions for four-point functions of a chiral superfield Φ and its conjugate. In this case we derive bounds on the OPE coefficients of scalar operators appearing in the Φ × Φ OPE, and show that there is an upper bound on the dimension of ΦΦ when dim Φ is close to 1. We also present even more stringent bounds on c and τ IJ. In supersymmetric gauge theories believed to flow to superconformal fixed points one can use anomaly matching to explicitly check whether these bounds are satisfied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Holdom, Techniodor, Phys. Lett. B 150 (1985) 301 [SPIRES].

    ADS  Google Scholar 

  2. T. Akiba and T. Yanagida, Hierarchic Chiral Condensate, Phys. Lett. B 169 (1986) 432 [SPIRES].

    ADS  Google Scholar 

  3. T.W. Appelquist, D. Karabali and L.C.R. Wijewardhana, Chiral Hierarchies and the Flavor Changing Neutral Current Problem in Technicolor, Phys. Rev. Lett. 57 (1986) 957 [SPIRES].

    Article  ADS  Google Scholar 

  4. K. Yamawaki, M. Bando and K.-i. Matumoto, Scale Invariant Technicolor Model and a Technidilaton, Phys. Rev. Lett. 56 (1986) 1335 [SPIRES].

    Article  ADS  Google Scholar 

  5. T. Appelquist and L.C.R. Wijewardhana, Chiral Hierarchies and Chiral Perturbations in Technicolor, Phys. Rev. D 35 (1987) 774 [SPIRES].

    ADS  Google Scholar 

  6. T. Appelquist and L.C.R. Wijewardhana, Chiral Hierarchies from Slowly Running Couplings in Technicolor Theories, Phys. Rev. D 36 (1987) 568 [SPIRES].

    ADS  Google Scholar 

  7. M.A. Luty and T. Okui, Conformal technicolor, JHEP 09 (2006) 070 [hep-ph/0409274] [SPIRES].

    Article  ADS  Google Scholar 

  8. M.A. Luty, Strong Conformal Dynamics at the LHC and on the Lattice, JHEP 04 (2009) 050 [arXiv:0806.1235] [SPIRES].

    Article  ADS  Google Scholar 

  9. J. Galloway, J.A. Evans, M.A. Luty and R.A. Tacchi, Minimal Conformal Technicolor and Precision Electroweak Tests, JHEP 10 (2010) 086 [arXiv:1001.1361] [SPIRES].

    Google Scholar 

  10. H. Georgi, A.E. Nelson and A. Manohar, On The Proposition That All Fermions Are Created Equal, Phys. Lett. B 126 (1983) 169 [SPIRES].

    ADS  Google Scholar 

  11. A.E. Nelson and M.J. Strassler, Suppressing flavor anarchy, JHEP 09 (2000) 030 [hep-ph/0006251] [SPIRES].

    Article  ADS  Google Scholar 

  12. D. Poland and D. Simmons-Duffin, Superconformal Flavor Simplified, JHEP 05 (2010) 079 [arXiv:0910.4585] [SPIRES].

    Article  ADS  Google Scholar 

  13. N. Craig, Simple Models of Superconformal Flavor, arXiv:1004.4218 [SPIRES].

  14. T. Kobayashi and H. Terao, Sfermion masses in Nelson-Strassler type of models: SUSY standard models coupled with SCFTs, Phys. Rev. D 64 (2001) 075003 [hep-ph/0103028] [SPIRES].

    ADS  Google Scholar 

  15. A.E. Nelson and M.J. Strassler, Exact results for supersymmetric renormalization and the supersymmetric flavor problem, JHEP 07 (2002) 021 [hep-ph/0104051] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. M.A. Luty and R. Sundrum, Supersymmetry breaking and composite extra dimensions, Phys. Rev. D 65 (2002) 066004 [hep-th/0105137] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  17. M. Luty and R. Sundrum, Anomaly mediated supersymmetry breaking in four dimensions, naturally, Phys. Rev. D 67 (2003) 045007 [hep-th/0111231] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  18. T. Kobayashi, H. Nakano, T. Noguchi and H. Terao, Sfermion mass degeneracy, superconformal dynamics and supersymmetric grand unified theories, Phys. Rev. D 66 (2002) 095011 [hep-ph/0202023] [SPIRES].

    ADS  Google Scholar 

  19. M. Dine et al., Visible effects of the hidden sector, Phys. Rev. D 70 (2004) 045023 [hep-ph/0405159] [SPIRES].

    ADS  Google Scholar 

  20. R. Sundrum, ’Gaugomaly’ mediated SUSY breaking and conformal sequestering, Phys. Rev. D 71 (2005) 085003 [hep-th/0406012] [SPIRES].

    ADS  Google Scholar 

  21. M. Ibe, K.I. Izawa, Y. Nakayama, Y. Shinbara and T. Yanagida, Conformally sequestered SUSY breaking in vector-like gauge theories, Phys. Rev. D 73 (2006) 015004 [hep-ph/0506023] [SPIRES].

    ADS  Google Scholar 

  22. M. Ibe, K.I. Izawa, Y. Nakayama, Y. Shinbara and T. Yanagida, More on conformally sequestered SUSY breaking, Phys. Rev. D 73 (2006) 035012 [hep-ph/0509229] [SPIRES].

    ADS  Google Scholar 

  23. M. Schmaltz and R. Sundrum, Conformal sequestering simplified, JHEP 11 (2006) 011 [hep-th/0608051] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. S. Kachru, L. McAllister and R. Sundrum, Sequestering in string theory, JHEP 10 (2007) 013 [hep-th/0703105] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. O. Aharony, L. Berdichevsky, M. Berkooz, Y. Hochberg and D. Robles-Llana, Inverted Sparticle Hierarchies from Natural Particle Hierarchies, Phys. Rev. D 81 (2010) 085006 [arXiv:1001.0637] [SPIRES].

    ADS  Google Scholar 

  26. T. Kobayashi, Y. Nakai and R. Takahashi, Revisiting superparticle spectra in superconformal flavor models, JHEP 09 (2010) 093 [arXiv:1006.4042] [SPIRES].

    Article  ADS  Google Scholar 

  27. E. Dudas, G. von Gersdorff, J. Parmentier and S. Pokorski, Flavour in supersymmetry: horizontal symmetries or wave function renormalisation, JHEP 12 (2010) 015 [arXiv:1007.5208] [SPIRES].

    Article  ADS  Google Scholar 

  28. T.S. Roy and M. Schmaltz, A hidden solution to the μ/B μ problem in gauge mediation, Phys. Rev. D 77 (2008) 095008 [arXiv:0708.3593] [SPIRES].

    ADS  Google Scholar 

  29. H. Murayama, Y. Nomura and D. Poland, More Visible Effects of the Hidden Sector, Phys. Rev. D 77 (2008) 015005 [arXiv:0709.0775] [SPIRES].

    ADS  Google Scholar 

  30. G. Perez, T.S. Roy and M. Schmaltz, Phenomenology of SUSY with scalar sequestering, Phys. Rev. D 79 (2009) 095016 [arXiv:0811.3206] [SPIRES].

    ADS  Google Scholar 

  31. H.D. Kim and J.-H. Kim, Higgs Phenomenology of Scalar Sequestering, JHEP 05 (2009) 040 [arXiv:0903.0025] [SPIRES].

    Article  Google Scholar 

  32. N.J. Craig and D. Green, On the Phenomenology of Strongly Coupled Hidden Sectors, JHEP 09 (2009) 113 [arXiv:0905.4088] [SPIRES].

    Article  ADS  Google Scholar 

  33. R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT , JHEP 12 (2008) 031 [arXiv:0807.0004] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. V.S. Rychkov and A. Vichi, Universal Constraints on Conformal Operator Dimensions, Phys. Rev. D 80 (2009) 045006 [arXiv:0905.2211] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  35. F. Caracciolo and V.S. Rychkov, Rigorous Limits on the Interaction Strength in Quantum Field Theory, Phys. Rev. D 81 (2010) 085037 [arXiv:0912.2726] [SPIRES].

    ADS  Google Scholar 

  36. S. Hellerman, A Universal Inequality for CFT and Quantum Gravity, arXiv:0902.2790 [SPIRES].

  37. F.A. Dolan and H. Osborn, Superconformal symmetry, correlation functions and the operator product expansion, Nucl. Phys. B 629 (2002) 3 [hep-th/0112251] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  38. H. Osborn and A.C. Petkou, Implications of Conformal Invariance in Field Theories for General Dimensions, Ann. Phys. 231 (1994) 311 [hep-th/9307010] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. G. Mack, All Unitary Ray Representations of the Conformal Group SU(2, 2) with Positive Energy, Commun. Math. Phys. 55 (1977) 1 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys. B 599 (2001) 459 [hep-th/0011040] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. F.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys. B 678 (2004) 491 [hep-th/0309180] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  42. M. Flato and C. Fronsdal, Representations Of Conformal Supersymmetry, Lett. Math. Phys. 8 (1984) 159 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. V.K. Dobrev and V.B. Petkova, All Positive Energy Unitary Irreducible Representations of Extended Conformal Supersymmetry, Phys. Lett. B 162 (1985) 127 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  44. S. Minwalla, Restrictions imposed by superconformal invariance on quantum field theories, Adv. Theor. Math. Phys. 2 (1998) 781 [hep-th/9712074] [SPIRES].

    Google Scholar 

  45. H. Osborn, N = 1 superconformal symmetry in four-dimensional quantum field theory, Annals Phys. 272 (1999) 243 [hep-th/9808041] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. P.S. Howe and P.C. West, Operator product expansions in four-dimensional superconformal field theories, Phys. Lett. B 389 (1996) 273 [hep-th/9607060] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  47. F.A. Dolan and H. Osborn, Implications of N = 1 superconformal symmetry for chiral fields, Nucl. Phys. B 593 (2001) 599 [hep-th/0006098] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  48. D. Anselmi, D.Z. Freedman, M.T. Grisaru and A.A. Johansen, Nonperturbative formulas for central functions of supersymmetric gauge theories, Nucl. Phys. B 526 (1998) 543 [hep-th/9708042] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  49. D. Anselmi, J. Erlich, D.Z. Freedman and A.A. Johansen, Positivity constraints on anomalies in supersymmetric gauge theories, Phys. Rev. D 57 (1998) 7570 [hep-th/9711035] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  50. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].

    Article  MathSciNet  MATH  Google Scholar 

  51. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  52. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  53. D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the CFT(d)/AdS(d +1) correspondence, Nucl. Phys. B 546 (1999) 96 [hep-th/9804058] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  54. S. Ferrara and B. Zumino, Transformation Properties of the Supercurrent, Nucl. Phys. B 87 (1975) 207 [SPIRES].

    Article  ADS  Google Scholar 

  55. E. Barnes, E. Gorbatov, K.A. Intriligator, M. Sudano and J. Wright, The exact superconformal R-symmetry minimizes tau(RR), Nucl. Phys. B 730 (2005) 210 [hep-th/0507137] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  56. M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  57. K.A. Intriligator and B. Wecht, The exact superconformal R-symmetry maximizes a, Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  58. R.G. Leigh and M.J. Strassler, Accidental symmetries and N = 1 duality in supersymmetric gauge theory, Nucl. Phys. B 496 (1997) 132 [hep-th/9611020] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  59. N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  60. D. Kutasov, A. Parnachev and D.A. Sahakyan, Central charges and U(1)R symmetries in N = 1 super Yang-Mills, JHEP 11 (2003) 013 [hep-th/0308071] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  61. K.A. Intriligator and B. Wecht, RG fixed points and flows in SQCD with adjoints, Nucl. Phys. B 677 (2004) 223 [hep-th/0309201] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  62. D. Kutasov, New results on the ’a-theorem’ in four dimensional supersymmetric field theory, hep-th/0312098 [SPIRES].

  63. E. Barnes, K.A. Intriligator, B. Wecht and J. Wright, Evidence for the strongest version of the 4d a-theorem, via a-maximization along RG flows, Nucl. Phys. B 702 (2004) 131 [hep-th/0408156] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  64. C. Csáki, P. Meade and J. Terning, A mixed phase of SUSY gauge theories from a-maximization, JHEP 04 (2004) 040 [hep-th/0403062] [SPIRES].

    Article  ADS  Google Scholar 

  65. E. Barnes, K.A. Intriligator, B. Wecht and J. Wright, N = 1 RG flows, product groups and a-maximization, Nucl. Phys. B 716 (2005) 33 [hep-th/0502049] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  66. K.A. Intriligator, IR free or interacting? A proposed diagnostic, Nucl. Phys. B 730 (2005) 239 [hep-th/0509085] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  67. T. Kawano, Y. Ookouchi, Y. Tachikawa and F. Yagi, Pouliot type duality via a-maximization, Nucl. Phys. B 735 (2006) 1 [hep-th/0509230] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  68. T. Kawano and F. Yagi, Supersymmetric N = 1 Spin(10) Gauge Theory with Two Spinors via a-Maximization, Nucl. Phys. B 786 (2007) 135 [arXiv:0705.4022] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  69. A.D. Shapere and Y. Tachikawa, A counterexample to the ’a-theorem’, JHEP 12 (2008) 020 [arXiv:0809.3238] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  70. D. Poland, The Phase Structure of Supersymmetric Sp(2N c ) Gauge Theories with an Adjoint, JHEP 11 (2009) 049 [arXiv:0908.2131] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  71. D. Kutasov, A Comment on duality in N = 1 supersymmetric nonAbelian gauge theories, Phys. Lett. B 351 (1995) 230 [hep-th/9503086] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  72. D. Kutasov and A. Schwimmer, On duality in supersymmetric Yang-Mills theory, Phys. Lett. B 354 (1995) 315 [hep-th/9505004] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  73. D. Kutasov, A. Schwimmer and N. Seiberg, Chiral Rings, Singularity Theory and Electric-Magnetic Duality, Nucl. Phys. B 459 (1996) 455 [hep-th/9510222] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  74. D.M. Hofman and J. Maldacena, Conformal collider physics: Energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [SPIRES].

    Article  ADS  Google Scholar 

  75. H.K. Dreiner, H.E. Haber and S.P. Martin, Two-component spinor techniques and Feynman rules for quantum field theory and supersymmetry, Phys. Rept. 494 (2010) 1 [arXiv:0812.1594] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  76. J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton Univ. Press, Princeton U.S.A. (1992) [SPIRES].

    Google Scholar 

  77. D. Butter, N = 1 Conformal Superspace in Four Dimensions, Annals Phys. 325 (2010) 1026 [arXiv:0906.4399] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  78. GNU Linear Programming Kit, http://www.gnu.org/software/glpk/glpk.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Poland.

Additional information

ArXiv ePrint: 1009.2087

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poland, D., Simmons-Duffin, D. Bounds on 4D conformal and superconformal field theories. J. High Energ. Phys. 2011, 17 (2011). https://doi.org/10.1007/JHEP05(2011)017

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2011)017

Keywords

Navigation