Skip to main content
Log in

Phenomenology of dark matter from A 4 flavor symmetry

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate a model in which Dark Matter is stabilized by means of a Z 2 parity that results from the same non-abelian discrete flavor symmetry which accounts for the observed pattern of neutrino mixing. In our A 4 example the standard model is extended by three extra Higgs doublets and the Z 2 parity emerges as a remnant of the spontaneous breaking of A 4 after electroweak symmetry breaking. We perform an analysis of the parameter space of the model consistent with electroweak precision tests, collider searches and perturbativity. We determine the regions compatible with the observed relic dark matter density and we present prospects for detection in direct as well as indirect Dark Matter search experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [SPIRES].

    Article  ADS  Google Scholar 

  2. M. Taoso, G. Bertone and A. Masiero, Dark Matter Candidates: A Ten-Point Test, JCAP 03 (2008) 022.

    ADS  Google Scholar 

  3. T. Hambye, On the stability of particle dark matter, arXiv:1012.4587 [SPIRES].

  4. M. Frigerio and T. Hambye, Dark matter stability and unification without supersymmetry, Phys. Rev. D 81 (2010) 075002 [arXiv:0912.1545] [SPIRES].

    ADS  Google Scholar 

  5. M. Kadastik, K. Kannike and M. Raidal, Less-dimensions and matter parity as the origin of Dark Matter, Phys. Rev. D 81 (2010) 015002 [arXiv:0903.2475] [SPIRES].

    ADS  Google Scholar 

  6. B. Batell, Dark Discrete Gauge Symmetries, Phys. Rev. D 83 (2011) 035006 [arXiv:1007.0045] [SPIRES].

    ADS  Google Scholar 

  7. S.P. Martin, Some simple criteria for gauged R-parity, Phys. Rev. D 46 (1992) 2769 [hep-ph/9207218] [SPIRES].

    ADS  Google Scholar 

  8. M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [SPIRES].

    Article  ADS  Google Scholar 

  9. M. Hirsch, S. Morisi, E. Peinado and J.W.F. Valle, Discrete dark matter, Phys. Rev. D 82 (2010) 116003 [arXiv:1007.0871] [SPIRES].

    ADS  Google Scholar 

  10. T. Schwetz, M. Tortola and J.W.F. Valle, Three-flavour neutrino oscillation update, New J. Phys. 10 (2008) 113011 [arXiv:0808.2016] [SPIRES].

    Article  ADS  Google Scholar 

  11. Y. Kajiyama and H. Okada, T(13) Flavor Symmetry and Decaying Dark Matter, Nucl. Phys. B 848 (2011) 303 [arXiv:1011.5753] [SPIRES].

    Article  ADS  Google Scholar 

  12. V. Berezinsky and J.W.F. Valle, The KeV majoron as a dark matter particle, Phys. Lett. B 318 (1993) 360 [hep-ph/9309214] [SPIRES].

    ADS  Google Scholar 

  13. M. Lattanzi and J.W.F. Valle, Decaying warm dark matter and neutrino masses, Phys. Rev. Lett. 99 (2007) 121301 [arXiv:0705.2406] [SPIRES].

    Article  ADS  Google Scholar 

  14. F. Bazzocchi, M. Lattanzi, S. Riemer-Sorensen and J.W.F. Valle, X-ray photons from late-decaying majoron dark matter, JCAP 08 (2008) 013 [arXiv:0805.2372] [SPIRES].

    ADS  Google Scholar 

  15. P. Minkowski, μeγ at a Rate of One Out of 1-Billion Muon Decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].

    ADS  Google Scholar 

  16. M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, CERN report, Print-80-0576, CERN (1979) [SPIRES].

  17. T. Yanagida, Kek lectures, O. Sawada and A. Sugamoto eds., KEK (1979).

  18. R.N. Mohapatra and G. Senjanovic, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].

    Article  ADS  Google Scholar 

  19. J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [SPIRES].

    ADS  Google Scholar 

  20. D. Meloni, S. Morisi and E. Peinado, Neutrino phenomenology and stable dark matter with A4, Phys. Lett. B 697 (2011) 339 [arXiv:1011.1371] [SPIRES].

    ADS  Google Scholar 

  21. K.S. Babu, E. Ma and J.W.F. Valle, Underlying A 4 symmetry for the neutrino mass matrix and the quark mixing matrix, Phys. Lett. B 552 (2003) 207 [hep-ph/0206292] [SPIRES].

    ADS  Google Scholar 

  22. R. Bernabei et al., New results from DAMA/LIBRA, Eur. Phys. J. C 67 (2010) 39 [arXiv:1002.1028] [SPIRES].

    Article  ADS  Google Scholar 

  23. DAMA collaboration, R. Bernabei et al., Search for WIMP annual modulation signature: Results from DAMA/NaI-3 and DAMA/NaI-4 and the global combined analysis, Phys. Lett. B 480 (2000) 23 [SPIRES].

    ADS  Google Scholar 

  24. CoGeNT collaboration, C.E. Aalseth et al., Results from a Search for Light-Mass Dark Matter with a P-type Point Contact Germanium Detector, Phys. Rev. Lett. 106 (2011) 131301 [arXiv:1002.4703] [SPIRES].

    Article  ADS  Google Scholar 

  25. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [SPIRES].

    ADS  Google Scholar 

  26. W. Grimus, L. Lavoura, O.M. Ogreid and P. Osland, The oblique parameters in multi-Higgs-doublet models, Nucl. Phys. B 801 (2008) 81 [arXiv:0802.4353] [SPIRES].

    Article  ADS  Google Scholar 

  27. R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: An alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [SPIRES].

    ADS  Google Scholar 

  28. W. Grimus, L. Lavoura, O.M. Ogreid and P. Osland, A precision constraint on multi-Higgs-doublet models, J. Phys. G 35 (2008) 075001 [arXiv:0711.4022] [SPIRES].

    ADS  Google Scholar 

  29. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [SPIRES].

    ADS  Google Scholar 

  30. A. Pierce and J. Thaler, Natural dark matter from an unnatural Higgs boson and new colored particles at the TeV scale, JHEP 08 (2007) 026 [hep-ph/0703056] [SPIRES].

    Article  ADS  Google Scholar 

  31. E. Lundstrom, M. Gustafsson and J. Edsjo, The Inert Doublet Model and LEP II Limits, Phys. Rev. D 79 (2009) 035013 [arXiv:0810.3924] [SPIRES].

    ADS  Google Scholar 

  32. G. Bélanger et al., Indirect search for dark matter with MicrOMEGAs2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  33. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs2.1, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  34. L. Lopez Honorez and C.E. Yaguna, A new viable region of the inert doublet model, JCAP 01 (2011) 002 [arXiv:1011.1411] [SPIRES].

    ADS  Google Scholar 

  35. L. Lopez Honorez and C.E. Yaguna, The inert doublet model of dark matter revisited, JHEP 09 (2010) 046 [arXiv:1003.3125] [SPIRES].

    Article  ADS  Google Scholar 

  36. N. Fornengo, S. Scopel and A. Bottino, Discussing direct search of dark matter particles in the Minimal Supersymmetric extension of the Standard Model with light neutralinos, Phys. Rev. D 83 (2011) 015001 [arXiv:1011.4743] [SPIRES].

    ADS  Google Scholar 

  37. C. Savage, G. Gelmini, P. Gondolo and K. Freese, XENON10/100 dark matter constraints in comparison with CoGeNT and DAMA: examining the Leff dependence, Phys. Rev. D 83 (2011) 055002 [arXiv:1006.0972] [SPIRES].

    ADS  Google Scholar 

  38. The CDMS-II collaboration, Z. Ahmed et al., Dark Matter Search Results from the CDMS II Experiment, Science 327 (2010) 1619 [arXiv:0912.3592] [SPIRES].

    Article  ADS  Google Scholar 

  39. CDMS-II collaboration, Z. Ahmed et al., Results from a Low-Energy Analysis of the CDMS II Germanium Data, Phys. Rev. Lett. 106 (2011) 131302 [arXiv:1011.2482] [SPIRES].

    Article  ADS  Google Scholar 

  40. XENON100 collaboration, E. Aprile et al., First Dark Matter Results from the XENON100 Experiment, Phys. Rev. Lett. 105 (2010) 131302 [arXiv:1005.0380] [SPIRES].

    Article  ADS  Google Scholar 

  41. A.A. Abdo et al., Observations of Milky Way Dwarf Spheroidal galaxies with the Fermi-LAT detector and constraints on Dark Matter models, Astrophys. J. 712 (2010) 147 [arXiv:1001.4531] [SPIRES].

    Article  ADS  Google Scholar 

  42. A. Abdo et al., Constraints on Cosmological Dark Matter Annihilation from the Fermi-LAT Isotropic Diffuse Gamma-Ray Measurement, JCAP 04 (2010) 014.

    ADS  Google Scholar 

  43. K.N. Abazajian, S. Blanchet and J.P. Harding, Enhanced Dark Matter Sensitivity from Fermi-LAT Resolution of the Diffuse Gamma-Ray Background, arXiv:1011.5090 [SPIRES].

  44. J. Kopp, T. Schwetz and J. Zupan, Global interpretation of direct Dark Matter searches after CDMS-II results, JCAP 02 (2010) 014 [arXiv:0912.4264] [SPIRES].

    ADS  Google Scholar 

  45. S. Andreas, C. Arina, T. Hambye, F.-S. Ling and M.H.G. Tytgat, A light scalar WIMP through the Higgs portal and CoGeNT, Phys. Rev. D 82 (2010) 043522 [arXiv:1003.2595] [SPIRES].

    ADS  Google Scholar 

  46. P. Belli et al., Extending the DAMA annual-modulation region by inclusion of the uncertainties in astrophysical velocities, Phys. Rev. D 61 (2000) 023512 [hep-ph/9903501] [SPIRES].

    ADS  Google Scholar 

  47. A.M. Green, Dependence of direct detection signals on the WIMP velocity distribution, JCAP 10 (2010) 034 [arXiv:1009.0916] [SPIRES].

    ADS  Google Scholar 

  48. P.J. Fox, J. Liu and N. Weiner, Integrating Out A strophysical Uncertainties, arXiv:1011.1915 [SPIRES].

  49. N. Bozorgnia, G.B. Gelmini and P. Gondolo, Channeling in direct dark matter detection V: channeling fraction in solid Xe, Ar and Ne, arXiv:1011.6006 [SPIRES].

  50. V. Barger, W.-Y. Keung and D. Marfatia, Electromagnetic properties of dark matter: dipole moments and charge form factor, Phys. Lett. B 696 (2011) 74 [arXiv:1007.4345] [SPIRES].

    ADS  Google Scholar 

  51. D. Tucker-Smith and N. Weiner, Inelastic dark matter, Phys. Rev. D 64 (2001) 043502 [hep-ph/0101138] [SPIRES].

    ADS  Google Scholar 

  52. S. Chang, A. P ierce and N. Weiner, Momentum Dependent Dark Matter Scattering, JCAP 01 (2010) 006 [arXiv:0908.3192] [SPIRES].

    ADS  Google Scholar 

  53. cresst collaboration, W. Seidel, talk at IDM 2010 workshop, Montpellier France (2010).

  54. T. Schwetz, Direct detection data and possible hints for low-mass WIMPs, arXiv:1011.5432 [SPIRES].

  55. J.I. Collar, Light WIMP Searches: The Effect of the Uncertainty in Recoil Energy Scale and Quenching Factor, arXiv:1010.5187 [SPIRES].

  56. M. Ibe, H. Murayama and T.T. Yanagida, Breit-Wigner Enhancement of Dark Matter Annihilation, Phys. Rev. D 79 (2009) 095009 [arXiv:0812.0072] [SPIRES].

    ADS  Google Scholar 

  57. W.-L. Guo and Y.-L. Wu, Enhancement of Dark Matter Annihilation via Breit-Wigner Resonance, Phys. Rev. D 79 (2009) 055012 [arXiv:0901.1450] [SPIRES].

    ADS  Google Scholar 

  58. D. Feldman, Z. Liu and P. Nath, PAMELA Positron Excess as a Signal from the Hidden Sector, Phys. Rev. D 79 (2009) 063509 [arXiv:0810.5762] [SPIRES].

    ADS  Google Scholar 

  59. M. Ibe, Y. Nakayama, H. Murayama and T.T. Yanagida, Nambu-Goldstone Dark Matter and Cosmic Ray Electron and Positron Excess, JHEP 04 (2009) 087 [arXiv:0902.2914] [SPIRES].

    Article  ADS  Google Scholar 

  60. M. Ackermann et al., Constraints on Dark Matter Annihilation in Clusters of Galaxies with the Fermi Large Area Telescope, JCAP 05 (2010) 025 [arXiv:1002.2239] [SPIRES].

    ADS  Google Scholar 

  61. M. Papucci and A. Strumia, Robust implications on Dark Matter from the first FERMI sky gamma map, JCAP 03 (2010) 014 [arXiv:0912.0742] [SPIRES].

    ADS  Google Scholar 

  62. M. Cirelli, P. Panci and P.D. Serpico, Diffuse gamma ray constraints on annihilating or decaying Dark Matter after Fermi, Nucl. Phys. B 840 (2010) 284 [arXiv:0912.0663] [SPIRES].

    Article  ADS  Google Scholar 

  63. for the Fermi-LAT collaboration, G. Zaharijas, A. Cuoco, Z. Yang and J. Conrad, Constraints on the Galactic Halo Dark Matter from Fermi-LAT Diffuse Measurements, arXiv:1012.0588 [SPIRES].

  64. B. Anderson, Fermi-LAT constraints on diffuse Dark Matter annihilation from the Galactic Halo, arXiv:1012.0863 [SPIRES].

  65. A. Cuoco, A. Sellerholm, J. Conrad and S. Hannestad, Anisotropies in the Diffuse Gamma-Ray Background from Dark Matter with Fermi LAT: a closer look, arXiv:1005.0843 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Taoso.

Additional information

Multidark fellow. (M. Taoso)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boucenna, M.S., Hirsch, M., Morisi, S. et al. Phenomenology of dark matter from A 4 flavor symmetry. J. High Energ. Phys. 2011, 37 (2011). https://doi.org/10.1007/JHEP05(2011)037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2011)037

Keywords

Navigation