Skip to main content
Log in

The semiclassical limit of W N CFTs and Vasiliev theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We propose a refinement of the Gaberdiel-Gopakumar duality conjecture between W N conformal field theories and 2+1-dimensional higher spin gravity. We make an identification of generic representations of the W N CFT in the semiclassical limit with bulk configurations. By studying the spectrum of the semiclassical limit of the W N theories and mapping to solutions of Euclidean Vasiliev gravity at λ = −N, we propose that the ‘light states’ of the W N minimal models in the ’t Hooft limit map not to the conical defects of the Vasiliev theory, but rather to bound states of perturbative scalar fields with these defects. Evidence for this identification comes from comparing charges and from holographic relations between CFT null states and bulk symmetries. We also make progress in understanding the coupling of scalar matter to sl(N) gauge fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Klebanov and A. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  2. J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a higher spin symmetry, arXiv:1112.1016 [INSPIRE].

  3. S. Giombi et al., Chern-Simons theory with vector fermion matter, Eur. Phys. J. C 72 (2012) 2112 [arXiv:1110.4386] [INSPIRE].

    ADS  Google Scholar 

  4. C.-M. Chang, S. Minwalla, T. Sharma and X. Yin, ABJ triality: from higher spin fields to strings, arXiv:1207.4485 [INSPIRE].

  5. J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a slightly broken higher spin symmetry, arXiv:1204.3882 [INSPIRE].

  6. M.R. Gaberdiel and R. Gopakumar, An AdS 3 dual for minimal model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].

    ADS  Google Scholar 

  7. M.R. Gaberdiel and R. Gopakumar, Triality in minimal model holography, JHEP 07 (2012) 127 [arXiv:1205.2472] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. S. Prokushkin and M.A. Vasiliev, Higher spin gauge interactions for massive matter fields in 3D AdS space-time, Nucl. Phys. B 545 (1999) 385 [hep-th/9806236] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. M.R. Gaberdiel, R. Gopakumar, T. Hartman and S. Raju, Partition functions of holographic minimal models, JHEP 08 (2011) 077 [arXiv:1106.1897] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. M.R. Gaberdiel, R. Gopakumar and A. Saha, Quantum W -symmetry in AdS 3, JHEP 02 (2011) 004 [arXiv:1009.6087] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  11. C.-M. Chang and X. Yin, Higher spin gravity with matter in AdS 3 and its CFT dual, JHEP 10 (2012) 024 [arXiv:1106.2580] [INSPIRE].

    Article  ADS  Google Scholar 

  12. C. Ahn, The coset spin-4 Casimir operator and its three-point functions with scalars, JHEP 02 (2012) 027 [arXiv:1111.0091] [INSPIRE].

    Article  ADS  Google Scholar 

  13. M. Ammon, P. Kraus and E. Perlmutter, Scalar fields and three-point functions in D = 3 higher spin gravity, JHEP 07 (2012) 113 [arXiv:1111.3926] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. P. Kraus and E. Perlmutter, Partition functions of higher spin black holes and their CFT duals, JHEP 11 (2011) 061 [arXiv:1108.2567] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. M.R. Gaberdiel, T. Hartman and K. Jin, Higher spin black holes from CFT, JHEP 04 (2012) 103 [arXiv:1203.0015] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. K. Papadodimas and S. Raju, Correlation functions in holographic minimal models, Nucl. Phys. B 856 (2012) 607 [arXiv:1108.3077] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. C.-M. Chang and X. Yin, Correlators in W N minimal model revisited, JHEP 10 (2012) 050 [arXiv:1112.5459] [INSPIRE].

    Article  ADS  Google Scholar 

  18. A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. M. Henneaux and S.-J. Rey, Nonlinear W as asymptotic symmetry of three-dimensional higher spin anti-de Sitter gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. M.R. Gaberdiel and T. Hartman, Symmetries of holographic minimal models, JHEP 05 (2011) 031 [arXiv:1101.2910] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. A. Castro, R. Gopakumar, M. Gutperle and J. Raeymaekers, Conical defects in higher spin theories, JHEP 02 (2012) 096 [arXiv:1111.3381] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  22. M.R. Gaberdiel and R. Gopakumar, Minimal model holography, arXiv:1207.6697 [INSPIRE].

  23. V. Balasubramanian, P. Kraus and A.E. Lawrence, Bulk versus boundary dynamics in anti-de Sitter space-time, Phys. Rev. D 59 (1999) 046003 [hep-th/9805171] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  24. A. Zamolodchikov, Infinite additional symmetries in two-dimensional conformal quantum field theory, Theor. Math. Phys. 65 (1985) 1205 [Teor. Mat. Fiz. 65 (1985) 347] [INSPIRE].

  25. A. Bilal, Introduction to W algebras, in Trieste spring school lectures, CERN-TH-6083-91, Trieste Italy (1991) [INSPIRE].

  26. P. Bouwknegt and K. Schoutens, W symmetry in conformal field theory, Phys. Rept. 223 (1993) 183 [hep-th/9210010] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. V. Fateev and A. Zamolodchikov, Conformal quantum field theory models in two-dimensions having Z 3 symmetry, Nucl. Phys. B 280 (1987) 644 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. V. Fateev and S.L. Lukyanov, The models of two-dimensional conformal quantum field theory with Z n symmetry, Int. J. Mod. Phys. A 3 (1988) 507 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  29. M. Niedermaier, Irrational free field resolutions for W(sl(n)) and extended Sugawara construction, Commun. Math. Phys. 148 (1992) 249 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Springer, New York U.S.A. (1997).

    Book  MATH  Google Scholar 

  31. M. Bauer, P. Di Francesco, C. Itzykson and J. Zuber, Covariant differential equations and singular vectors in Virasoro representations, Nucl. Phys. B 362 (1991) 515 [INSPIRE].

    Article  ADS  Google Scholar 

  32. A. Maloney and E. Witten, Quantum gravity partition functions in three dimensions, JHEP 02 (2010) 029 [arXiv:0712.0155] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. A. Castro, T. Hartman and A. Maloney, The gravitational exclusion principle and null states in anti-de Sitter space, Class. Quant. Grav. 28 (2011) 195012 [arXiv:1107.5098] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. A. Castro, M.R. Gaberdiel, T. Hartman, A. Maloney and R. Volpato, The gravity dual of the Ising model, Phys. Rev. D 85 (2012) 024032 [arXiv:1111.1987] [INSPIRE].

    ADS  Google Scholar 

  35. P. Bowcock and G. Watts, On the classification of quantum W algebras, Nucl. Phys. B 379 (1992) 63 [hep-th/9111062] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. C. Pope, L. Romans and X. Shen, W(∞) and the Racah-Wigner algebra, Nucl. Phys. B 339 (1990) 191 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. P. Kraus and E. Perlmutter, Probing higher spin black holes, JHEP 02 (2013) 096 [arXiv:1209.4937] [INSPIRE].

    Article  ADS  Google Scholar 

  38. J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. S. Giombi, A. Maloney and X. Yin, One-loop partition functions of 3D gravity, JHEP 08 (2008) 007 [arXiv:0804.1773] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. S. Banerjee et al., Smoothed transitions in higher spin AdS gravity, arXiv:1209.5396 [INSPIRE].

  41. M. Gutperle and P. Kraus, Higher spin black holes, JHEP 05 (2011) 022 [arXiv:1103.4304] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Procházka.

Additional information

ArXiv ePrint: 1210.8452

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perlmutter, E., Procházka, T. & Raeymaekers, J. The semiclassical limit of W N CFTs and Vasiliev theory. J. High Energ. Phys. 2013, 7 (2013). https://doi.org/10.1007/JHEP05(2013)007

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2013)007

Keywords

Navigation