Skip to main content
Log in

Extra dimensions, black holes and fireballs at the LHC

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The collision of two gravitationally interacting, ultra-relativistic, extended sources is being examined. This investigation classifies the transverse distributions that are collided for fixed collision energy, according to whether one or two (a small and a large) apparent horizons may or may not be formed in a flat background in 4 dimensions. The study extends to the thermodynamical properties of the objects that are created, which exhibit a universal behavior in their entropy, and, suggests the elimination of the possibility in observing black holes (BHs) at the LHC in the absence of extra dimensions. On the other hand, including extra dimensions, and assuming that the matter is localized (dense) enough in those directions, opens new avenues in creating BHs at energies of the order of TeV. The investigation is carried further to AdS 5 backgrounds and makes connections with the implications for the quark-gluon plasma (QGP) formation in heavy ion collisions. In particular, classes of the geometries found suggest that a BH is formed if and only if the (central collision) energy is sufficiently large compared to the transverse scale of the corresponding gauge theory side stress-tensor. This implies that when the scattering in the gravity description is mapped onto a heavy ion collision problem yields a result, which is in accordance with the current intuition and data: QGP is formed only at high enough energies compared to ΛQCD, even for central processes. Incorporating weak coupling physics and in particular the Color Glass Condensate (CGC) model, a satisfactory fitting with the RHIC and the LHC data for multiplicities may be established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Aichelburg and R. Sexl, On the gravitational field of a massless particle, Gen. Rel. Grav. 2 (1971) 303 [INSPIRE].

    Article  ADS  Google Scholar 

  2. P. D’Eath, High speed black hole encounters and gravitational radiation, Phys. Rev. D 18 (1978) 990 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. P. D’Eath and P. Payne, Gravitational radiation in high speed black hole collisions. 1. Perturbation treatment of the axisymmetric speed of light collision, Phys. Rev. D 46 (1992) 658 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. P. D’Eath and P. Payne, Gravitational radiation in high speed black hole collisions. 2. Reduction to two independent variables and calculation of the second order news function, Phys. Rev. D 46 (1992) 675 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. P. D’Eath and P. Payne, Gravitational radiation in high speed black hole collisions. 3. Results and conclusions, Phys. Rev. D 46 (1992) 694 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. F.S. Coelho, C. Herdeiro and M.O. Sampaio, Radiation from a D-dimensional collision of shock waves: a remarkably simple fit formula, Phys. Rev. Lett. 108 (2012) 181102 [arXiv:1203.5355] [INSPIRE].

    Article  ADS  Google Scholar 

  7. F.S. Coelho, C. Herdeiro and M.O. Sampaio, Radiation from a d-dimensional collision of shock waves: a remarkably simple fit formula, Phys. Rev. Lett. 108 (2012) 181102 [arXiv:1203.5355] [INSPIRE].

    Article  ADS  Google Scholar 

  8. C. Herdeiro, M.O. Sampaio and C. Rebelo, Radiation from a d-dimensional collision of shock waves: first order perturbation theory, JHEP 07 (2011) 121 [arXiv:1105.2298] [INSPIRE].

    Article  ADS  Google Scholar 

  9. D. Amati, M. Ciafaloni and G. Veneziano, Effective action and all order gravitational eikonal at planckian energies, Nucl. Phys. B 403 (1993) 707 [INSPIRE].

    Article  ADS  Google Scholar 

  10. E. Kohlprath and G. Veneziano, Black holes from high-energy beam-beam collisions, JHEP 06 (2002) 057 [gr-qc/0203093] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. D. Amati, M. Ciafaloni and G. Veneziano, Towards an S-matrix description of gravitational collapse, JHEP 02 (2008) 049 [arXiv:0712.1209] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. G. Veneziano and J. Wosiek, Exploring an S-matrix for gravitational collapse. II. A momentum space analysis, JHEP 09 (2008) 024 [arXiv:0805.2973] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Ciafaloni and D. Colferai, S-matrix and quantum tunneling in gravitational collapse, JHEP 11 (2008) 047 [arXiv:0807.2117] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. D.M. Eardley and S.B. Giddings, Classical black hole production in high-energy collisions, Phys. Rev. D 66 (2002) 044011 [gr-qc/0201034] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  15. K. Sfetsos, On gravitational shock waves in curved space-times, Nucl. Phys. B 436 (1995) 721 [hep-th/9408169] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. Y. Constantinou, D. Gal’tsov, P. Spirin and T.N. Tomaras, Scalar Bremsstrahlung in gravity-mediated ultrarelativistic collisions, JHEP 11 (2011) 118 [arXiv:1106.3509] [INSPIRE].

    Article  ADS  Google Scholar 

  17. D.V. Gal’tsov, G. Kofinas, P. Spirin and T.N. Tomaras, Transplanckian Bremsstrahlung and black hole production, Phys. Lett. B 683 (2010) 331 [arXiv:0908.0675] [INSPIRE].

    ADS  Google Scholar 

  18. J. Mureika, P. Nicolini and E. Spallucci, Could any black holes be produced at the LHC?, Phys. Rev. D 85 (2012) 106007 [arXiv:1111.5830] [INSPIRE].

    ADS  Google Scholar 

  19. Y.V. Kovchegov and S. Lin, Toward thermalization in heavy ion collisions at strong coupling, JHEP 03 (2010) 057 [arXiv:0911.4707] [INSPIRE].

    Article  ADS  Google Scholar 

  20. S. Lin and E. Shuryak, Grazing collisions of gravitational shock waves and entropy production in heavy ion collision, Phys. Rev. D 79 (2009) 124015 [arXiv:0902.1508] [INSPIRE].

    ADS  Google Scholar 

  21. S.S. Gubser, S.S. Pufu and A. Yarom, Entropy production in collisions of gravitational shock waves and of heavy ions, Phys. Rev. D 78 (2008) 066014 [arXiv:0805.1551] [INSPIRE].

    ADS  Google Scholar 

  22. I. Arefeva, A. Bagrov and E. Pozdeeva, Holographic phase diagram of quark-gluon plasma formed in heavy-ions collisions, JHEP 05 (2012) 117 [arXiv:1201.6542] [INSPIRE].

    Article  ADS  Google Scholar 

  23. E. Kiritsis and A. Taliotis, Multiplicities from black-hole formation in heavy-ion collisions, JHEP 04 (2012) 065 [arXiv:1111.1931] [INSPIRE].

    Article  ADS  Google Scholar 

  24. R. Casadio, O. Micu and A. Orlandi, Minimum black hole mass from colliding gaussian packets, Eur. Phys. J. C 72 (2012) 2146 [arXiv:1205.6303] [INSPIRE].

    ADS  Google Scholar 

  25. L. Álvarez-Gaumé, C. Gomez, A. Sabio Vera, A. Tavanfar and M.A. Vazquez-Mozo, Critical formation of trapped surfaces in the collision of gravitational shock waves, JHEP 02 (2009) 009 [arXiv:0811.3969] [INSPIRE].

    Article  Google Scholar 

  26. A. Duenas-Vidal and M.A. Vazquez-Mozo, A note on the collision of Reissner-Nordström gravitational shock waves in AdS, Phys. Lett. B 713 (2012) 500 [arXiv:1203.1046] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  27. E. Kiritsis and A. Taliotis, Mini-black-hole production at RHIC and LHC, PoS EPS-HEP2011 (2011) 121 [arXiv:1110.5642] [INSPIRE].

  28. P. Nicolini, Noncommutative black holes, the final appeal to quantum gravity: a review, Int. J. Mod. Phys. A 24 (2009) 1229 [arXiv:0807.1939] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  29. P. Nicolini and G. Torrieri, The Hawking-Page crossover in noncommutative anti-de Sitter space, JHEP 08 (2011) 097 [arXiv:1105.0188] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. J.L. Albacete, Y.V. Kovchegov and A. Taliotis, Modeling heavy ion collisions in AdS/CFT, JHEP 07 (2008) 100 [arXiv:0805.2927] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. J.L. Albacete, Y.V. Kovchegov and A. Taliotis, Asymmetric collision of two shock waves in AdS 5, JHEP 05 (2009) 060 [arXiv:0902.3046] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. A. Taliotis, Heavy ion collisions with transverse dynamics from evolving AdS geometries, JHEP 09 (2010) 102 [arXiv:1004.3500] [INSPIRE].

    Article  ADS  Google Scholar 

  33. S.S. Gubser and I. Mitra, Instability of charged black holes in Anti-de Sitter space, hep-th/0009126 [INSPIRE].

  34. R. Konoplya and A. Zhidenko, Stability of higher dimensional Reissner-Nordstrom-anti-de Sitter black holes, Phys. Rev. D 78 (2008) 104017 [arXiv:0809.2048] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  35. A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Holography, thermodynamics and fluctuations of charged AdS black holes, Phys. Rev. D 60 (1999) 104026 [hep-th/9904197] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  36. J. Louko and S.N. Winters-Hilt, Hamiltonian thermodynamics of the Reissner-Nordstrom Anti-de Sitter black hole, Phys. Rev. D 54 (1996) 2647 [gr-qc/9602003] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  37. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

  38. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  39. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  40. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  41. K. Kang and H. Nastase, High energy QCD from planckian scattering in AdS and the Froissart bound, Phys. Rev. D 72 (2005) 106003 [hep-th/0410173] [INSPIRE].

    ADS  Google Scholar 

  42. S.B. Giddings, High-energy QCD scattering, the shape of gravity on an IR brane and the Froissart bound, Phys. Rev. D 67 (2003) 126001 [hep-th/0203004] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  43. S.S. Gubser, S.S. Pufu and A. Yarom, Off-center collisions in AdS 5 with applications to multiplicity estimates in heavy-ion collisions, JHEP 11 (2009) 050 [arXiv:0902.4062] [INSPIRE].

    Article  ADS  Google Scholar 

  44. Y.V. Kovchegov and A. Taliotis, Early time dynamics in heavy ion collisions from AdS/CFT correspondence, Phys. Rev. C 76 (2007) 014905 [arXiv:0705.1234] [INSPIRE].

    ADS  Google Scholar 

  45. I.Y. Aref’eva, A. Bagrov and E. Guseva, Critical formation of trapped surfaces in the collision of non-expanding gravitational shock waves in de Sitter space-time, JHEP 12 (2009) 009 [arXiv:0905.1087] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. STAR collaboration, J. Adams et al., Evidence from d+Au measurements for final state suppression of high p T hadrons in Au+Au collisions at RHIC, Phys. Rev. Lett. 91 (2003) 072304 [nucl-ex/0306024] [INSPIRE].

    Article  ADS  Google Scholar 

  47. T. Biswas, E. Gerwick, T. Koivisto and A. Mazumdar, Towards singularity and ghost free theories of gravity, Phys. Rev. Lett. 108 (2012) 031101 [arXiv:1110.5249] [INSPIRE].

    Article  ADS  Google Scholar 

  48. P. Romatschke and J.D. Hogg, Pre-equilibrium radial flow from central shock-wave collisions in AdS 5, JHEP 04 (2013) 048 [arXiv:1301.2635] [INSPIRE].

    Article  ADS  Google Scholar 

  49. B. Wu and P. Romatschke, Shock wave collisions in AdS 5 : approximate numerical solutions, Int. J. Mod. Phys. C 22 (2011) 1317 [arXiv:1108.3715] [INSPIRE].

    ADS  Google Scholar 

  50. R.D. Woods and D.S. Saxon, Diffuse surface optical model for nucleon-nuclei scattering, Phys. Rev. 95 (1954) 577 [INSPIRE].

    Article  ADS  Google Scholar 

  51. N. Arkani-Hamed, S. Dimopoulos and G. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].

    ADS  Google Scholar 

  52. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [INSPIRE].

    ADS  Google Scholar 

  53. J. Frere, G. Moreau and E. Nezri, Neutrino mass patterns within the seesaw model from multilocalization along extra dimensions, Phys. Rev. D 69 (2004) 033003 [hep-ph/0309218] [INSPIRE].

    ADS  Google Scholar 

  54. N. Arkani-Hamed and M. Schmaltz, Hierarchies without symmetries from extra dimensions, Phys. Rev. D 61 (2000) 033005 [hep-ph/9903417] [INSPIRE].

    ADS  Google Scholar 

  55. N. Arkani-Hamed, Y. Grossman and M. Schmaltz, Split fermions in extra dimensions and exponentially small cross-sections at future colliders, Phys. Rev. D 61 (2000) 115004 [hep-ph/9909411] [INSPIRE].

    ADS  Google Scholar 

  56. G. Cacciapaglia, C. Csáki, J. Galloway, G. Marandella, J. Terning et al., A GIM mechanism from extra dimensions, JHEP 04 (2008) 006 [arXiv:0709.1714] [INSPIRE].

    Article  ADS  Google Scholar 

  57. A. Taliotis, Black topologies production in extra dimensions, Phys. Rev. D 86 (2012) 064034 [arXiv:1204.0778] [INSPIRE].

    ADS  Google Scholar 

  58. O.J. Dias, G.T. Horowitz and J.E. Santos, Gravitational turbulent instability of anti-de Sitter space, Class. Quant. Grav. 29 (2012) 194002 [arXiv:1109.1825] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. P. Bizon and A. Rostworowski, On weakly turbulent instability of Anti-de Sitter space, Phys. Rev. Lett. 107 (2011) 031102 [arXiv:1104.3702] [INSPIRE].

    Article  ADS  Google Scholar 

  60. J. Jalmuzna, A. Rostworowski and P. Bizon, A comment on AdS collapse of a scalar field in higher dimensions, Phys. Rev. D 84 (2011) 085021 [arXiv:1108.4539] [INSPIRE].

    ADS  Google Scholar 

  61. E. Caceres, A. Kundu and D.-L. Yang, Jet quenching and holographic thermalization with a chemical potential, arXiv:1212.5728 [INSPIRE].

  62. B. Wu, On holographic thermalization and gravitational collapse of tachyonic scalar fields, JHEP 04 (2013) 044 [arXiv:1301.3796] [INSPIRE].

    Article  ADS  Google Scholar 

  63. O.J. Dias, G.T. Horowitz, D. Marolf and J.E. Santos, On the nonlinear stability of asymptotically anti-de Sitter solutions, Class. Quant. Grav. 29 (2012) 235019 [arXiv:1208.5772] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  64. J.L. Albacete, Y.V. Kovchegov and A. Taliotis, DIS on a large nucleus in AdS/CFT, JHEP 07 (2008) 074 [arXiv:0806.1484] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  65. S. Lin and E. Shuryak, On the critical condition in gravitational shock wave collision and heavy ion collisions, Phys. Rev. D 83 (2011) 045025 [arXiv:1011.1918] [INSPIRE].

    ADS  Google Scholar 

  66. A. Taliotis, DIS from the AdS/CFT correspondence, Nucl. Phys. A 830 (2009) 299C [arXiv:0907.4204] [INSPIRE].

    ADS  Google Scholar 

  67. D. Grumiller and P. Romatschke, On the collision of two shock waves in AdS 5, JHEP 08 (2008) 027 [arXiv:0803.3226] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  68. H. Bantilan, F. Pretorius and S.S. Gubser, Simulation of asymptotically AdS 5 spacetimes with a generalized harmonic evolution scheme, Phys. Rev. D 85 (2012) 084038 [arXiv:1201.2132] [INSPIRE].

    ADS  Google Scholar 

  69. M.P. Heller, R.A. Janik and P. Witaszczyk, A numerical relativity approach to the initial value problem in asymptotically Anti-de Sitter spacetime for plasma thermalization - An ADM formulation, Phys. Rev. D 85 (2012) 126002 [arXiv:1203.0755] [INSPIRE].

    ADS  Google Scholar 

  70. B. Wu, On holographic thermalization and gravitational collapse of massless scalar fields, JHEP 10 (2012) 133 [arXiv:1208.1393] [INSPIRE].

    Article  ADS  Google Scholar 

  71. I.Y. Arefeva and I. Volovich, On holographic thermalization and dethermalization of quark-gluon plasma, arXiv:1211.6041 [INSPIRE].

  72. J. Erdmenger and S. Lin, Thermalization from gauge/gravity duality: evolution of singularities in unequal time correlators, JHEP 10 (2012) 028 [arXiv:1205.6873] [INSPIRE].

    Article  ADS  Google Scholar 

  73. R. Baier, S.A. Stricker, O. Taanila and A. Vuorinen, Production of prompt photons: holographic duality and thermalization, Phys. Rev. D 86 (2012) 081901 [arXiv:1207.1116] [INSPIRE].

    ADS  Google Scholar 

  74. D. Galante and M. Schvellinger, Thermalization with a chemical potential from AdS spaces, JHEP 07 (2012) 096 [arXiv:1205.1548] [INSPIRE].

    Article  ADS  Google Scholar 

  75. E. Caceres and A. Kundu, Holographic thermalization with chemical potential, JHEP 09 (2012) 055 [arXiv:1205.2354] [INSPIRE].

    Article  ADS  Google Scholar 

  76. E. Caceres, A. Kundu, B. Müller, D. Vaman and D.-L. Yang, Jet quenching and holographic thermalization, arXiv:1208.6368 [INSPIRE].

  77. K. Dusling, J. Erdmenger, M. Kaminski, F. Rust, D. Teaney et al., Quarkonium transport in thermal AdS/CFT, JHEP 10 (2008) 098 [arXiv:0808.0957] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  78. P. Kovtun, D. Son and A. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].

    Article  ADS  Google Scholar 

  79. G. Policastro, D. Son and A. Starinets, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [INSPIRE].

    Article  ADS  Google Scholar 

  80. A. Buchel, L. Lehner and R.C. Myers, Thermal quenches in N = 2* plasmas, JHEP 08 (2012) 049 [arXiv:1206.6785] [INSPIRE].

    Article  ADS  Google Scholar 

  81. A. Buchel, R.C. Myers and A. Sinha, Beyond η s = 1/4π, JHEP 03 (2009) 084 [arXiv:0812.2521] [INSPIRE].

    Article  ADS  Google Scholar 

  82. J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions, arXiv:1101.0618 [INSPIRE].

  83. V. Balasubramanian, A. Bernamonti, J. de Boer, N. Copland, B. Craps et al., Thermalization of strongly coupled field theories, Phys. Rev. Lett. 106 (2011) 191601 [arXiv:1012.4753] [INSPIRE].

    Article  ADS  Google Scholar 

  84. V. Balasubramanian, A. Bernamonti, J. de Boer, N. Copland, B. Craps et al., Holographic thermalization, Phys. Rev. D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].

    ADS  Google Scholar 

  85. V. Balasubramanian, A. Bernamonti, N. Copland, B. Craps and F. Galli, Thermalization of mutual and tripartite information in strongly coupled two dimensional conformal field theories, Phys. Rev. D 84 (2011) 105017 [arXiv:1110.0488] [INSPIRE].

    ADS  Google Scholar 

  86. S.S. Gubser, Conformal symmetry and the Balitsky-Kovchegov equation, Phys. Rev. D 84 (2011) 085024 [arXiv:1102.4040] [INSPIRE].

    ADS  Google Scholar 

  87. A. Stoffers and I. Zahed, Holographic pomeron and entropy, arXiv:1211.3077 [INSPIRE].

  88. J. Jalilian-Marian and Y.V. Kovchegov, Saturation physics and deuteron-Gold collisions at RHIC, Prog. Part. Nucl. Phys. 56 (2006) 104 [hep-ph/0505052] [INSPIRE].

    Article  ADS  Google Scholar 

  89. D. Triantafyllopoulos, The energy dependence of the saturation momentum from RG improved BFKL evolution, Nucl. Phys. B 648 (2003) 293 [hep-ph/0209121] [INSPIRE].

    Article  ADS  Google Scholar 

  90. F. Gelis, E. Iancu, J. Jalilian-Marian and R. Venugopalan, The color glass condensate, Ann. Rev. Nucl. Part. Sci. 60 (2010) 463 [arXiv:1002.0333] [INSPIRE].

    Article  ADS  Google Scholar 

  91. E. Levin and A.H. Rezaeian, Gluon saturation and energy dependence of hadron multiplicity in pp and AA collisions at the LHC, Phys. Rev. D 83 (2011) 114001 [arXiv:1102.2385] [INSPIRE].

    ADS  Google Scholar 

  92. E. Gotsman, E. Levin, M. Lublinsky and U. Maor, Towards a new global QCD analysis: low × DIS data from nonlinear evolution, Eur. Phys. J. C 27 (2003) 411 [hep-ph/0209074] [INSPIRE].

    Article  ADS  Google Scholar 

  93. J.L. Albacete and Y.V. Kovchegov, Solving high energy evolution equation including running coupling corrections, Phys. Rev. D 75 (2007) 125021 [arXiv:0704.0612] [INSPIRE].

    ADS  Google Scholar 

  94. B. Back, M. Baker, D. Barton, R. Betts, M. Ballintijn et al., The significance of the fragmentation region in ultrarelativistic heavy ion collisions, Phys. Rev. Lett. 91 (2003) 052303 [nucl-ex/0210015] [INSPIRE].

    Article  ADS  Google Scholar 

  95. A. Toia, Bulk Properties of Pb-Pb collisions at \( \sqrt{{{s_{NN }}}} \) = 2.76 TeV measured by ALICE, J. Phys. G 38 (2011) 124007 [arXiv:1107.1973] [INSPIRE].

    ADS  Google Scholar 

  96. Y.V. Kovchegov, Isotropization and thermalization in heavy ion collisions, Nucl. Phys. A 774 (2006) 869 [hep-ph/0510232] [INSPIRE].

    ADS  Google Scholar 

  97. Y.V. Kovchegov, Can thermalization in heavy ion collisions be described by QCD diagrams?, Nucl. Phys. A 762 (2005) 298 [hep-ph/0503038] [INSPIRE].

    ADS  Google Scholar 

  98. M.P. Heller, D. Mateos, W. van der Schee and D. Trancanelli, Strong coupling isotropization of non-abelian plasmas simplified, Phys. Rev. Lett. 108 (2012) 191601 [arXiv:1202.0981] [INSPIRE].

    Article  ADS  Google Scholar 

  99. V. Balasubramanian and T.S. Levi, Beyond the veil: inner horizon instability and holography, Phys. Rev. D 70 (2004) 106005 [hep-th/0405048] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  100. P.F. Kolb and U.W. Heinz, Hydrodynamic description of ultrarelativistic heavy ion collisions, nucl-th/0305084 [INSPIRE].

  101. P. Huovinen, P. Kolb, U.W. Heinz, P. Ruuskanen and S. Voloshin, Radial and elliptic flow at RHIC: further predictions, Phys. Lett. B 503 (2001) 58 [hep-ph/0101136] [INSPIRE].

    ADS  Google Scholar 

  102. E. Schnedermann, J. Sollfrank and U.W. Heinz, Thermal phenomenology of hadrons from 200 A/GeV S+S collisions, Phys. Rev. C 48 (1993) 2462 [nucl-th/9307020] [INSPIRE].

    ADS  Google Scholar 

  103. L.D. McLerran and R. Venugopalan, Computing quark and gluon distribution functions for very large nuclei, Phys. Rev. D 49 (1994) 2233 [hep-ph/9309289] [INSPIRE].

    ADS  Google Scholar 

  104. A. Mueller and D. Triantafyllopoulos, The energy dependence of the saturation momentum, Nucl. Phys. B 640 (2002) 331 [hep-ph/0205167] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios Taliotis.

Additional information

ArXiv ePrint: 1212.0528

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taliotis, A. Extra dimensions, black holes and fireballs at the LHC. J. High Energ. Phys. 2013, 34 (2013). https://doi.org/10.1007/JHEP05(2013)034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2013)034

Keywords

Navigation