Skip to main content
Log in

Higgs portal vector dark matter: revisited

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We revisit the Higgs portal vector dark matter model including a hidden sector Higgs field that generates the mass of the vector dark matter. The model becomes renormalizable and has two scalar bosons, the mixtures of the standard model (SM) Higgs and the hidden sector Higgs bosons. The strong bound from direct detection such as XENON100 is evaded due to the cancellation mechanism between the contributions from two scalar bosons. As a result, the model becomes still viable in large range of dark matter mass, contrary to some claims in the literature. The Higgs properties are also affected, the signal strengths for the Higgs boson search being universally suppressed relative to the SM value, which could be tested at the LHC in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kanemura, S. Matsumoto, T. Nabeshima and N. Okada, Can WIMP dark matter overcome the nightmare scenario?, Phys. Rev. D 82 (2010) 055026 [arXiv:1005.5651] [INSPIRE].

    ADS  Google Scholar 

  2. O. Lebedev, H.M. Lee and Y. Mambrini, Vector Higgs-portal dark matter and the invisible Higgs, Phys. Lett. B 707 (2012) 570 [arXiv:1111.4482] [INSPIRE].

    ADS  Google Scholar 

  3. A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].

    ADS  Google Scholar 

  4. L. Lopez-Honorez, T. Schwetz and J. Zupan, Higgs portal, fermionic dark matter and a standard model like Higgs at 125 GeV, Phys. Lett. B 716 (2012) 179 [arXiv:1203.2064] [INSPIRE].

    ADS  Google Scholar 

  5. Y.G. Kim, K.Y. Lee and S. Shin, Singlet fermionic dark matter, JHEP 05 (2008) 100 [arXiv:0803.2932] [INSPIRE].

    ADS  Google Scholar 

  6. S. Baek, P. Ko and W.-I. Park, Search for the Higgs portal to a singlet fermionic dark matter at the LHC, JHEP 02 (2012) 047 [arXiv:1112.1847] [INSPIRE].

    Article  ADS  Google Scholar 

  7. XENON100 collaboration, E. Aprile et al., Dark matter results from 225 live days of XENON100 data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].

    Article  ADS  Google Scholar 

  8. CDMS Collaboration, EDELWEISS collaboration, Z. Ahmed et al., Combined limits on WIMPs from the CDMS and EDELWEISS experiments, Phys. Rev. D 84 (2011) 011102 [arXiv:1105.3377] [INSPIRE].

    ADS  Google Scholar 

  9. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  10. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  11. S. Baek, P. Ko, W.-I. Park and E. Senaha, Vacuum structure and stability of a singlet fermion dark matter model with a singlet scalar messenger, JHEP 11 (2012) 116 [arXiv:1209.4163] [INSPIRE].

    Article  ADS  Google Scholar 

  12. O. Lebedev, On stability of the electroweak vacuum and the Higgs portal, Eur. Phys. J. C 72 (2012)2058 [arXiv:1203.0156] [INSPIRE].

    ADS  Google Scholar 

  13. J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee and A. Strumia, Stabilization of the electroweak vacuum by a scalar threshold effect, JHEP 06 (2012) 031 [arXiv:1203.0237] [INSPIRE].

    Article  ADS  Google Scholar 

  14. S. Baek, P. Ko and W.I. Park, work in preparation.

  15. Y. Farzan and A.R. Akbarieh, VDM: a model for vector dark matter, JCAP 10 (2012) 026 [arXiv:1207.4272] [INSPIRE].

    Article  ADS  Google Scholar 

  16. T. Hambye, Hidden vector dark matter, JHEP 01 (2009) 028 [arXiv:0811.0172] [INSPIRE].

    Article  ADS  Google Scholar 

  17. T. Hambye and M.H. Tytgat, Confined hidden vector dark matter, Phys. Lett. B 683 (2010) 39 [arXiv:0907.1007] [INSPIRE].

    ADS  Google Scholar 

  18. H. Zhang, C.S. Li, Q.-H. Cao and Z. Li, A dark matter model with non-abelian gauge symmetry, Phys. Rev. D 82 (2010) 075003 [arXiv:0910.2831] [INSPIRE].

    ADS  Google Scholar 

  19. C. Arina, T. Hambye, A. Ibarra and C. Weniger, Intense γ-ray lines from hidden vector dark matter decay, JCAP 03 (2010) 024 [arXiv:0912.4496] [INSPIRE].

    Article  ADS  Google Scholar 

  20. J.L. Diaz-Cruz and E. Ma, Neutral SU(2) gauge extension of the standard model and a vector-boson dark-matter candidate, Phys. Lett. B 695 (2011) 264 [arXiv:1007.2631] [INSPIRE].

    ADS  Google Scholar 

  21. S. Bhattacharya, J.L. Diaz-Cruz, E. Ma and D. Wegman, Dark vector-gauge-boson model, Phys. Rev. D 85 (2012) 055008 [arXiv:1107.2093] [INSPIRE].

    ADS  Google Scholar 

  22. T. Abe, M. Kakizaki, S. Matsumoto and O. Seto, Vector WIMP miracle, Phys. Lett. B 713 (2012)211 [arXiv:1202.5902] [INSPIRE].

    ADS  Google Scholar 

  23. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  24. WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].

    Article  ADS  Google Scholar 

  25. G. Bélanger et al., Indirect search for dark matter with MicrOMEGAs2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  26. S. Glashow, J. Iliopoulos and L. Maiani, Weak interactions with lepton-hadron symmetry, Phys. Rev. D 2 (1970) 1285 [INSPIRE].

    ADS  Google Scholar 

  27. ATLAS collaboration, Updated ATLAS results on the signal strength of the Higgs-like boson for decays into WW and heavy fermion final states, ATLAS-CONF-2012-162 (2012).

  28. CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-HIG-12-045 (2012).

  29. XENON1T collaboration, E. Aprile, The XENON1T dark matter search experiment, arXiv:1206.6288 [INSPIRE].

  30. K. Funakubo, S. Tao and F. Toyoda, Phase transitions in the NMSSM, Prog. Theor. Phys. 114 (2005)369 [hep-ph/0501052] [INSPIRE].

    Article  ADS  Google Scholar 

  31. K. Cheung, T.-J. Hou, J.S. Lee and E. Senaha, The Higgs boson sector of the next-to-MSSM with CP-violation, Phys. Rev. D 82 (2010) 075007 [arXiv:1006.1458] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seungwon Baek.

Additional information

ArXiv ePrint: 1212.2131

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baek, S., Ko, P., Park, WI. et al. Higgs portal vector dark matter: revisited. J. High Energ. Phys. 2013, 36 (2013). https://doi.org/10.1007/JHEP05(2013)036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2013)036

Keywords

Navigation