Skip to main content
Log in

An effective theory for jet propagation in dense QCD matter: jet broadening and medium-induced bremsstrahlung

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Two effects, jet broadening and gluon bremsstrahlung induced by the propagation of a highly energetic quark in dense QCD matter, are reconsidered from effective theory point of view. We modify the standard Soft Collinear Effective Theory (SCET) Lagrangian to include Glauber modes, which are needed to implement the interactions between the medium and the collinear fields. We derive the Feynman rules for this Lagrangian and show that it is invariant under soft and collinear gauge transformations. We find that the newly constructed theory SCETG recovers exactly the general result for the transverse momentum broadening of jets. In the limit where the radiated gluons are significantly less energetic than the parent quark, we obtain a jet energy-loss kernel identical to the one discussed in the reaction operator approach to parton propagation in matter. In the framework of SCETG we present results for the fully-differential bremsstrahlung spectrum for both the incoherent and the Landau-Pomeranchunk-Migdal suppressed regimes beyond the soft-gluon approximation. Gauge invariance of the physics results is demonstrated explicitly by performing the calculations in both the light-cone and covariant R ξ gauges. We also show how the process-dependent medium-induced radiative corrections factorize from the jet production cross section on the example of the quark jets considered here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.F. Sterman and S. Weinberg, Jets from Quantum Chromodynamics, Phys. Rev. Lett. 39 (1977) 1436 [SPIRES].

    Article  ADS  Google Scholar 

  2. R.P. Feynman, R.D. Field and G.C. Fox, Quantum-chromodynamic approach for the large-transverse-momentum production of particles and jets, Phys. Rev. D 18 (1978) 3320 [SPIRES].

    ADS  Google Scholar 

  3. J.R. Ellis, Beyond the standard model with the LHC, Nature 448 (2007) 297 [SPIRES].

    Article  ADS  Google Scholar 

  4. The ATLAS collaboration, G. Aad et al., Expected Performance of the ATLAS Experiment-Detector, Trigger and Physics, arXiv:0901.0512 [SPIRES].

  5. CMS collaboration, G.L. Bayatian et al., CMS technical design report, volume II: Physics performance, J. Phys. G 34 (2007) 995 [SPIRES].

    ADS  Google Scholar 

  6. J.C. Collins and G.F. Sterman, Soft partons in QCD, Nucl. Phys. B 185 (1981) 172 [SPIRES].

    Article  ADS  Google Scholar 

  7. J.C. Collins, D.E. Soper and G.F. Sterman, Factorization of Hard Processes in QCD, Adv. Ser. Direct. High Energy Phys. 5 (1988) 1 [hep-ph/0409313] [SPIRES].

    Google Scholar 

  8. C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in B → X s γ in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [SPIRES].

    ADS  Google Scholar 

  9. C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [SPIRES].

    ADS  Google Scholar 

  10. C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001) 134 [hep-ph/0107001] [SPIRES].

    ADS  Google Scholar 

  11. C.W. Bauer, D. Pirjol and I.W. Stewart, Soft-Collinear Factorization in Effective Field Theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [SPIRES].

    ADS  Google Scholar 

  12. C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088] [SPIRES].

    ADS  Google Scholar 

  13. A.V. Manohar, Deep inelastic scattering as x → 1 using soft-collinear effective theory, Phys. Rev. D 68 (2003) 114019 [hep-ph/0309176] [SPIRES].

    ADS  Google Scholar 

  14. T. Becher, M. Neubert and B.D. Pecjak, Factorization and momentum-space resummation in deep-inelastic scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [SPIRES].

    Article  ADS  Google Scholar 

  15. S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Top Jets in the Peak Region: Factorization Analysis with NLL Resummation, Phys. Rev. D 77 (2008) 114003 [arXiv:0711.2079] [SPIRES].

    ADS  Google Scholar 

  16. C.W. Bauer, S.P. Fleming, C. Lee and G.F. Sterman, Factorization of e + e Event Shape Distributions with Hadronic Final States in Soft Collinear Effective Theory, Phys. Rev. D 78 (2008) 034027 [arXiv:0801.4569] [SPIRES].

    ADS  Google Scholar 

  17. T. Becher and M.D. Schwartz, Direct photon production with effective field theory, JHEP 02 (2010) 040 [arXiv:0911.0681] [SPIRES].

    Article  ADS  Google Scholar 

  18. S. Mantry and F. Petriello, Factorization and Resummation of Higgs Boson Differential Distributions in Soft-Collinear Effective Theory, Phys. Rev. D 81 (2010) 093007 [arXiv:0911.4135] [SPIRES].

    ADS  Google Scholar 

  19. I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization at the LHC: From PDFs to Initial State Jets, Phys. Rev. D 81 (2010) 094035 [arXiv:0910.0467] [SPIRES].

    ADS  Google Scholar 

  20. S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Jets from massive unstable particles: Top-mass determination, Phys. Rev. D 77 (2008) 074010 [hep-ph/0703207] [SPIRES].

    ADS  Google Scholar 

  21. T. Becher, M. Neubert and G. Xu, Dynamical Threshold Enhancement and Resummation in Drell-Yan Production, JHEP 07 (2008) 030 [arXiv:0710.0680] [SPIRES].

    Article  ADS  Google Scholar 

  22. T. Becher and M.D. Schwartz, A Precise determination of α s from LEP thrust data using effective field theory, JHEP 07 (2008) 034 [arXiv:0803.0342] [SPIRES].

    Article  ADS  Google Scholar 

  23. V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Renormalization-Group Improved Prediction for Higgs Production at Hadron Colliders, Eur. Phys. J. C 62 (2009) 333 [arXiv:0809.4283] [SPIRES].

    Article  ADS  Google Scholar 

  24. A. Hornig, C. Lee and G. Ovanesyan, Effective Predictions of Event Shapes: Factorized, Resummed and Gapped Angularity Distributions, JHEP 05 (2009) 122 [arXiv:0901.3780] [SPIRES].

    Article  ADS  Google Scholar 

  25. I. Vitev, S. Wicks and B.-W. Zhang, A theory of jet shapes and cross sections: from hadrons to nuclei, JHEP 11 (2008) 093 [arXiv:0810.2807] [SPIRES].

    Article  ADS  Google Scholar 

  26. I. Vitev and B.-W. Zhang, Jet tomography of high-energy nucleus-nucleus collisions at next-to-leading order, Phys. Rev. Lett. 104 (2010) 132001 [arXiv:0910.1090] [SPIRES].

    Article  ADS  Google Scholar 

  27. T. Renk, Medium-modified Jet Shapes and other Jet Observables from in-medium Parton Shower Evolution, Phys. Rev. C 80 (2009) 044904 [arXiv:0906.3397] [SPIRES].

    ADS  Google Scholar 

  28. R.B. Neufeld, I. Vitev and B.W. Zhang, The physics of Z 0 -tagged jets at the LHC, Phys. Rev. C 83 (2011) 034902 [arXiv:1006.2389] [SPIRES].

    ADS  Google Scholar 

  29. S. Salur, Full Jet Reconstruction in Heavy Ion Collisions, Nucl. Phys. A 830 (2009) 139c [arXiv:0907.4536] [SPIRES].

    ADS  Google Scholar 

  30. PHENIX collaboration, Y.-S. Lai, Probing medium-induced energy loss with direct jet reconstruction in p + p and Cu + Cu collisions at PHENIX, Nucl. Phys. A 830 (2009) 251c [arXiv:0907.4725] [SPIRES].

    ADS  Google Scholar 

  31. STAR collaboration, M. Ploskon, Inclusive cross section and correlations of fully reconstructed jets in 200 GeV Au + Au and p + p collisions, Nucl. Phys. A 830 (2009) 255c [arXiv:0908.1799] [SPIRES].

    ADS  Google Scholar 

  32. ALICE collaboration, K. Aamodt et al., Suppression of Charged Particle Production at Large Transverse Momentum in Central Pb-Pb Collisions at \( \sqrt {{{s_{NN}}}} = 2.76 \) TeV, Phys. Lett. B 696 (2011) 30 [arXiv:1012.1004] [SPIRES].

    ADS  Google Scholar 

  33. CMS collaboration, S. Chatrchyan et al., Observation and studies of jet quenching in PbPb collisions at nucleon-nucleon center-of-mass energy = 2.76 TeV, arXiv:1102.1957 [SPIRES].

  34. ATLAS collaboration, G. Aad et al., Observation of a Centrality-Dependent Dijet Asymmetry in Lead-Lead Collisions at \( \sqrt {{{S_{NN}}}} = 2.76 \) TeV with the ATLAS Detector at the LHC, Phys. Rev. Lett. 105 (2010) 252303 [arXiv:1011.6182] [SPIRES].

    Article  ADS  Google Scholar 

  35. A. Idilbi and A. Majumder, Extending Soft-Collinear-Effective-Theory to describe hard jets in dense QCD media, Phys. Rev. D 80 (2009) 054022 [arXiv:0808.1087] [SPIRES].

    ADS  Google Scholar 

  36. F. D’Eramo, H. Liu and K. Rajagopal, Transverse Momentum Broadening and the Jet Quenching Parameter, Redux, arXiv:1006.1367 [SPIRES].

  37. M. Gyulassy, P. Levai and I. Vitev, Reaction operator approach to multiple elastic scatterings, Phys. Rev. D 66 (2002) 014005 [nucl-th/0201078] [SPIRES].

    ADS  Google Scholar 

  38. J.-w. Qiu and I. Vitev, Transverse momentum diffusion and broadening of the back-to-back di-hadron correlation function, Phys. Lett. B 570 (2003) 161 [nucl-th/0306039] [SPIRES].

    ADS  Google Scholar 

  39. R. Baier, D. Schiff and B.G. Zakharov, Energy loss in perturbative QCD, Ann. Rev. Nucl. Part. Sci. 50 (2000) 37 [hep-ph/0002198] [SPIRES].

    Article  ADS  Google Scholar 

  40. M. Gyulassy, P. Levai and I. Vitev, Reaction operator approach to non-Abelian energy loss, Nucl. Phys. B 594 (2001) 371 [nucl-th/0006010] [SPIRES].

    Article  ADS  Google Scholar 

  41. X.-N. Wang and X.-f. Guo, Multiple parton scattering in nuclei: Parton energy loss, Nucl. Phys. A 696 (2001) 788 [hep-ph/0102230] [SPIRES].

    ADS  Google Scholar 

  42. P.B. Arnold, G.D. Moore and L.G. Yaffe, Photon and Gluon Emission in Relativistic Plasmas, JHEP 06 (2002) 030 [hep-ph/0204343] [SPIRES].

    Article  ADS  Google Scholar 

  43. M. Djordjevic, Theoretical formalism of radiative jet energy loss in a finite size dynamical QCD medium, Phys. Rev. C 80 (2009) 064909 [arXiv:0903.4591] [SPIRES].

    ADS  Google Scholar 

  44. I. Stewart and I. Rothstein, Glauber Gluons in SCET. Part I, talk presented at SCET workshop 2010, Ringberg Germany (2010).

  45. M.E. Luke, A.V. Manohar and I.Z. Rothstein, Renormalization group scaling in nonrelativistic QCD, Phys. Rev. D 61 (2000) 074025 [hep-ph/9910209] [SPIRES].

    ADS  Google Scholar 

  46. C.W. Bauer, B.O. Lange and G. Ovanesyan, On Glauber modes in Soft-Collinear Effective Theory, arXiv:1010.1027 [SPIRES].

  47. J.C. Collins, D.E. Soper and G.F. Sterman, Factorization for one-loop corrections in the Drell-Yan process, Nucl. Phys. B 223 (1983) 381 [SPIRES].

    Article  ADS  Google Scholar 

  48. G.T. Bodwin, Factorization of the Drell-Yan Cross-Section in Perturbation Theory, Phys. Rev. D 31 (1985) 2616 [SPIRES].

    ADS  Google Scholar 

  49. J.C. Collins, D.E. Soper and G.F. Sterman, Factorization for Short Distance Hadron-Hadron Scattering, Nucl. Phys. B 261 (1985) 104 [SPIRES].

    Article  ADS  Google Scholar 

  50. L.F. Abbott, Introduction to the Background Field Method, Acta Phys. Polon. B 13 (1982) 33 [SPIRES].

    MathSciNet  Google Scholar 

  51. I. Vitev, Non-Abelian energy loss in cold nuclear matter, Phys. Rev. C 75 (2007) 064906 [hep-ph/0703002] [SPIRES].

    ADS  Google Scholar 

  52. M. Baumgart, C. Marcantonini and I.W. Stewart, Systematic Improvement of Parton Showers with Effective Theory, Phys. Rev. D 83 (2011) 034011 [arXiv:1007.0758] [SPIRES].

    ADS  Google Scholar 

  53. C.W. Bauer, O. Catà and G. Ovanesyan, On different ways to quantize Soft-Collinear Effective Theory, arXiv:0809.1099 [SPIRES].

  54. A. Idilbi and I. Scimemi, Singular and Regular Gauges in Soft Collinear Effective Theory: The Introduction of the New Wilson Line T, Phys. Lett. B 695 (2011) 463 [arXiv:1009.2776] [SPIRES].

    ADS  Google Scholar 

  55. I. Vitev and B.-W. Zhang, A systematic study of direct photon production in heavy ion collisions, Phys. Lett. B 669 (2008) 337 [arXiv:0804.3805] [SPIRES].

    ADS  Google Scholar 

  56. R. Sharma, I. Vitev and B.-W. Zhang, Light-cone wave function approach to open heavy flavor dynamics in QCD matter, Phys. Rev. C 80 (2009) 054902 [arXiv:0904.0032] [SPIRES].

    ADS  Google Scholar 

  57. B.-W. Zhang and X.-N. Wang, Multiple parton scattering in nuclei: Beyond helicity amplitude approximation, Nucl. Phys. A 720 (2003) 429 [hep-ph/0301195] [SPIRES].

    ADS  Google Scholar 

  58. R.B. Neufeld, I. Vitev and B.-W. Zhang, Toward a determination of the shortest radiation length in nature, arXiv:1010.3708 [SPIRES].

  59. I. Vitev, A brief overview of fixed-order perturbative QCD calculations of jet production in heavy-ion collisions, Prog. Theor. Phys. Suppl. 187 (2011) 68 [arXiv:1010.5803] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  60. X.-d. Ji and F. Yuan, Parton distributions in light-cone gauge: Where are the final-state interactions?, Phys. Lett. B 543 (2002) 66 [hep-ph/0206057] [SPIRES].

    ADS  Google Scholar 

  61. A.V. Belitsky, X. Ji and F. Yuan, Final state interactions and gauge invariant parton distributions, Nucl. Phys. B 656 (2003) 165 [hep-ph/0208038] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grigory Ovanesyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ovanesyan, G., Vitev, I. An effective theory for jet propagation in dense QCD matter: jet broadening and medium-induced bremsstrahlung. J. High Energ. Phys. 2011, 80 (2011). https://doi.org/10.1007/JHEP06(2011)080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2011)080

Keywords

Navigation