Skip to main content
Log in

Sequestering in string compactifications

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the mediation of supersymmetry breaking in string compactifications whose moduli are stabilized by nonperturbative effects. We begin with a critical review of arguments for sequestering in supergravity and in string theory. We then show that geometric isolation, even in a highly warped space, is insufficient to achieve sequestering: in type IIB compactifications, nonperturbative superpotentials involving the Kähler moduli introduce cross-couplings between well-separated visible and hidden sectors. The scale of the resulting soft terms depends on the moduli stabilization scenario. In the Large Volume Scenario, nonperturbative superpotential contributions to the soft trilinear A terms can introduce significant flavor violation, while in KKLT compactifications their effects are negligible. In both scenarios, the contributions to the μ and Bμ parameters cannot be ignored in general. We conclude that sequestered supersymmetry breaking is possible in nonperturbatively-stabilized compactifications only if a mechanism in addition to bulk locality suppresses superpotential cross-couplings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. A. Anisimov, M. Dine, M. Graesser and S.D. Thomas, Brane world SUSY breaking from string/M theory, JHEP 03 (2002) 036 [hep-th/0201256] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. S. Kachru, J. McGreevy and P. Svrček, Bounds on masses of bulk fields in string compactifications, JHEP 04 (2006) 023 [hep-th/0601111] [SPIRES].

    Article  ADS  Google Scholar 

  4. S. Kachru, L. McAllister and R. Sundrum, Sequestering in string theory, JHEP 10 (2007) 013 [hep-th/0703105] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. M.A. Luty and R. Sundrum, Supersymmetry breaking and composite extra dimensions, Phys. Rev. D 65 (2002) 066004 [hep-th/0105137] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  6. A.E. Nelson and M.J. Strassler, Exact results for supersymmetric renormalization and the supersymmetric flavor problem, JHEP 07 (2002) 021 [hep-ph/0104051] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. K. Choi, K.S. Jeong and K.-i. Okumura, Phenomenology of mixed modulus-anomaly mediation in fluxed string compactifications and brane models, JHEP 09 (2005) 039 [hep-ph/0504037] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. K. Inoue, M. Kawasaki, M. Yamaguchi and T. Yanagida, Vanishing squark and slepton masses in a class of supergravity models, Phys. Rev. D 45 (1992) 328 [SPIRES].

    ADS  Google Scholar 

  9. M.A. Luty and R. Sundrum, Radius stabilization and anomaly-mediated supersymmetry breaking, Phys. Rev. D 62 (2000) 035008 [hep-th/9910202] [SPIRES].

    ADS  Google Scholar 

  10. I.R. Klebanov and E. Witten, Superconformal field theory on threebranes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. D. Baumann, A. Dymarsky, S. Kachru, I.R. Klebanov and L. McAllister, Holographic systematics of D-brane inflation, JHEP 03 (2009) 093 [arXiv:0808.2811] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. S. Kachru, J. Pearson and H.L. Verlinde, Brane/flux annihilation and the string dual of a non-supersymmetric field theory, JHEP 06 (2002) 021 [hep-th/0112197] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. I. Bena, M. Graña and N. Halmagyi, On the existence of meta-stable vacua in Klebanov-Strassler, JHEP 09 (2010) 087 [arXiv:0912.3519] [SPIRES].

    Article  ADS  Google Scholar 

  14. A. Ceresole, G. Dall’Agata, R. D’Auria and S. Ferrara, Spectrum of type IIB supergravity on AdS 5 × T 11 : predictions on N =1 SCFT’s, Phys. Rev. D 61 (2000) 066001 [hep-th/9905226] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  15. S. Kachru et al., Towards inflation in string theory, JCAP 10 (2003) 013 [hep-th/0308055] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  16. O. DeWolfe, S. Kachru and M. Mulligan, A gravity dual of metastable dynamical supersymmetry breaking, Phys. Rev. D 77 (2008) 065011 [arXiv:0801.1520] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  17. I. Bena, G. Giecold, M. Graña and N. Halmagyi, On the inflaton potential from antibranes in warped throats, arXiv:1011.2626 [SPIRES].

  18. D. Baumann, A. Dymarsky, S. Kachru, I.R. Klebanov and L. McAllister, D3-brane potentials from fluxes in AdS/CFT, JHEP 06 (2010) 072 [arXiv:1001.5028] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. R. Blumenhagen, J.P. Conlon, S. Krippendorf, S. Moster and F. Quevedo, SUSY breaking in local string/F-theory models, JHEP 09 (2009) 007 [arXiv:0906.3297] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. V.S. Kaplunovsky and J. Louis, Model independent analysis of soft terms in effective supergravity and in string theory, Phys. Lett. B 306 (1993) 269 [hep-th/9303040] [SPIRES].

    ADS  Google Scholar 

  21. A. Brignole, L.E. Ibáñez and C. Muñoz, Soft supersymmetry-breaking terms from supergravity and superstring models, hep-ph/9707209 [SPIRES].

  22. S.K. Soni and H.A. Weldon, Analysis of the supersymmetry breaking induced by N =1 supergravity theories, Phys. Lett. B 126 (1983) 215 [SPIRES].

    ADS  Google Scholar 

  23. J.P. Conlon, D. Cremades and F. Quevedo, Kähler potentials of chiral matter fields for Calabi-Yau string compactifications, JHEP 01 (2007) 022 [hep-th/0609180] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  25. V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. K. Bobkov, V. Braun, P. Kumar and S. Raby, Stabilizing all Kähler moduli in type IIB orientifolds, JHEP 12 (2010) 056 [arXiv:1003.1982] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  27. M. Berg, M. Haack and B. Körs, Loop corrections to volume moduli and inflation in string theory, Phys. Rev. D 71 (2005) 026005 [hep-th/0404087] [SPIRES].

    ADS  Google Scholar 

  28. D. Baumann et al., On D3-brane potentials in compactifications with fluxes and wrapped D-branes, JHEP 11 (2006) 031 [hep-th/0607050] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. D. Baumann and L. McAllister, A microscopic limit on gravitational waves from D-brane inflation, Phys. Rev. D 75 (2007) 123508 [hep-th/0610285] [SPIRES].

    ADS  Google Scholar 

  30. I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and χSB-resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. O. DeWolfe, L. McAllister, G. Shiu and B. Underwood, D3-brane vacua in stabilized compactifications, JHEP 09 (2007) 121 [hep-th/0703088] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. J.P. Conlon, Mirror mediation, JHEP 03 (2008) 025 [arXiv:0710.0873] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. K. Choi, K.S. Jeong and K.-I. Okumura, Flavor and CP conserving moduli mediated SUSY breaking in flux compactification, JHEP 07 (2008) 047 [arXiv:0804.4283] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. D. Baumann, A. Dymarsky, I.R. Klebanov and L. McAllister, Towards an explicit model of D-brane inflation, JCAP 01 (2008) 024 [arXiv:0706.0360] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  35. S. Kuperstein, Meson spectroscopy from holomorphic probes on the warped deformed conifold, JHEP 03 (2005) 014 [hep-th/0411097] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  36. M. Berg, M. Haack and B. Körs, On the moduli dependence of nonperturbative superpotentials in brane inflation, hep-th/0409282 [SPIRES].

  37. J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992).

    Google Scholar 

  38. L. Girardello and M.T. Grisaru, Soft breaking of supersymmetry, Nucl. Phys. B 194 (1982) 65 [SPIRES].

    Article  ADS  Google Scholar 

  39. K. Choi, A. Falkowski, H.P. Nilles and M. Olechowski, Soft supersymmetry breaking in KKLT flux compactification, Nucl. Phys. B 718 (2005) 113 [hep-th/0503216] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model, Nucl. Phys. B 477 (1996) 321 [hep-ph/9604387] [SPIRES].

    Article  ADS  Google Scholar 

  41. A. Misra and P. Shukla, Swiss cheese D3-D7 soft SUSY breaking — revelations, Nucl. Phys. B 827 (2010) 112 [arXiv:0906.4517] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  42. R. Blumenhagen, S. Moster and E. Plauschinn, Moduli stabilisation versus chirality for MSSM like type IIB orientifolds, JHEP 01 (2008) 058 [arXiv:0711.3389] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  43. S.P. de Alwis, Classical and quantum SUSY breaking effects in IIB local models, JHEP 03 (2010) 078 [arXiv:0912.2950] [SPIRES].

    Article  Google Scholar 

  44. K. Choi, H.P. Nilles, C.S. Shin and M. Trapletti, Sparticle spectrum of large volume compactification, JHEP 02 (2011) 047 [arXiv:1011.0999] [SPIRES].

    Article  ADS  Google Scholar 

  45. J.P. Conlon, F. Quevedo and K. Suruliz, Large-volume flux compactifications: moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP 08 (2005) 007 [hep-th/0505076] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  46. M. Cvetič, J. Halverson and R. Richter,2, Realistic Yukawa structures from orientifold compactifications, JHEP 12 (2009) 063 [arXiv:0905.3379] [SPIRES].

    Article  ADS  Google Scholar 

  47. M. Buican and S. Franco, SUSY breaking mediation by D-brane instantons, JHEP 12 (2008) 030 [arXiv:0806.1964] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  48. F. Marchesano and L. Martucci, Non-perturbative effects on seven-brane Yukawa couplings, Phys. Rev. Lett. 104 (2010) 231601 [arXiv:0910.5496] [SPIRES].

    Article  ADS  Google Scholar 

  49. J.P. Conlon, M. Goodsell and E. Palti, Anomaly mediation in superstring theory, arXiv:1008.4361 [SPIRES].

  50. M. Haack, D. Krefl, D. Lüst, A. Van Proeyen and M. Zagermann, Gaugino condensates and D-terms from D7-branes, JHEP 01 (2007) 078 [hep-th/0609211] [SPIRES].

    Article  ADS  Google Scholar 

  51. E. Dudas, Y. Mambrini, S. Pokorski and A. Romagnoni, Moduli stabilization with Fayet-Iliopoulos uplift, JHEP 04 (2008) 015 [arXiv:0711.4934] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  52. P. McGuirk, G. Shiu and Y. Sumitomo, Non-supersymmetric infrared perturbations to the warped deformed conifold, Nucl. Phys. B 842 (2010) 383 [arXiv:0910.4581] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  53. P. Candelas and X.C. de la Ossa, Comments on conifolds, Nucl. Phys. B 342 (1990) 246 [SPIRES].

    Article  ADS  Google Scholar 

  54. P. Ouyang, Holomorphic D 7-branes and flavored N =1 gauge theories, Nucl. Phys. B 699 (2004) 207 [hep-th/0311084] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Marsh.

Additional information

ArXiv ePrint:1012.1858

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berg, M., Marsh, D., McAllister, L. et al. Sequestering in string compactifications. J. High Energ. Phys. 2011, 134 (2011). https://doi.org/10.1007/JHEP06(2011)134

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2011)134

Keywords

Navigation