Skip to main content
Log in

Vertices, vortices & interacting surface operators

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We show that the vortex moduli space in non-abelian supersymmetric \( \mathcal{N} = \left( {{2},{2}} \right) \) gauge theories on the two dimensional plane with adjoint and anti-fundamental matter can be described as an holomorphic submanifold of the instanton moduli space in four dimensions. The vortex partition functions for these theories are computed via equivariant localization. We show that these coincide with the field theory limit of the topological vertex on the strip with boundary conditions corresponding to column diagrams. Moreover, we resum the field theory limit of the vertex partition functions in terms of generalized hypergeometric functions formulating their AGT dual description as interacting surface operators of simple type. Analogously we resum the topological open string amplitudes in terms of q-deformed generalized hypergeometric functions proving that they satisfy appropriate finite difference equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. M. Aganagic, A. Klemm and C. Vafa, Disk instantons, mirror symmetry and the duality web, Z. Naturforsch. A 57 (2002) 1 [hep-th/0105045] [INSPIRE].

    MathSciNet  Google Scholar 

  2. M. Aganagic, A. Klemm, M. Mariño and C. Vafa, The topological vertex, Commun. Math. Phys. 254 (2005) 425 [hep-th/0305132] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  3. M. Aganagic, R. Dijkgraaf, A. Klemm, M. Mariño and C. Vafa, Topological strings and integrable hierarchies, Commun. Math. Phys. 261 (2006) 451 [hep-th/0312085] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  4. L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. L.F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa and H. Vrlinde, Loop and surface operators in \( \mathcal{N} = {2} \) gauge theory and Liouville modular geometry, JHEP 01 (2010) 113 [arXiv:0909.0945] [INSPIRE].

    Article  ADS  Google Scholar 

  6. L.F. Alday and Y. Tachikawa, Affine SL(2) conformal blocks from 4D gauge theories, Lett. Math. Phys. 94 (2010) 87 [arXiv:1005.4469] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. A. Braverman, B. Feigin, M. Finkelberg and L. Rybnikov, A finite analog of the AGT relation I: finite W-algebras and quasimapsspaces, Commun. Math. Phys. 308 (2011) 457 [arXiv:1008.3655] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. H. Awata and Y. Yamada, Five-dimensional AGT conjecture and the deformed Virasoro algebra, JHEP 01 (2010) 125 [arXiv:0910.4431] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. J. Baptista, Non-Abelian vortices on compact Riemann surfaces, Commun. Math. Phys. 291 (2009) 799 [arXiv:0810.3220] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. A. Belavin, A.M. Polyakov and A. Zamolodchikov, Infinite conformal symmetry in two-dimensional Quantum Field Theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. I. Biswas and N.M. Romao, Moduli of vortices and Grassmann manifolds, arXiv:1012.4023 [INSPIRE].

  12. A. Brini, Open topological strings and integrable hierarchies: remodeling the A-model, Commun. Math. Phys. 312 (2012) 735 [arXiv:1102.0281] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. A. Brini, M. Mariño and S. Stevan, The uses of the refined matrix model recursion, J. Math. Phys. 52 (2011) 052305 [arXiv:1010.1210] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. A. Marshakov, A. Mironov and A. Morozov, On AGT relations with surface operator insertion and stationary limit of beta-ensembles, J. Geom. Phys. 61 (2011) 1203 [Teor. Mat. Fiz. 164 (2010) 1] [arXiv:1011.4491] [INSPIRE].

  15. M. Taki, Surface operator, bubbling Calabi-Yau and AGT relation, JHEP 07 (2011) 047 [arXiv:1007.2524] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. D. Gaiotto, Surface operators in \( \mathcal{N} = {2} \) 4D gauge theories, arXiv:0911.1316 [INSPIRE].

  17. H. Awata, H. Fuji, H. Kanno, M. Manabe and Y. Yamada, Localization with a surface operator, irregular conformal blocks and open topological string, arXiv:1008.0574 [INSPIRE].

  18. K. Maruyoshi and M. Taki, Deformed prepotential, quantum integrable system and Liouville field theory, Nucl. Phys. B 841 (2010) 388 [arXiv:1006.4505] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. U. Bruzzo et al., D-branes, surface operators and ADHM quiver representations, arXiv:1012.1826 [INSPIRE].

  20. A. Mironov and A. Morozov, Nekrasov functions from exact BS periods: the case of SU(N), J. Phys. A 43 (2010) 195401 [arXiv:0911.2396] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. A. Mironov and A. Morozov, Nekrasov functions and exact Bohr-Zommerfeld integrals, JHEP 04 (2010) 040 [arXiv:0910.5670] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. G. Bonelli and A. Tanzini, Hitchin systems, \( \mathcal{N} = {2} \) gauge theories and W-gravity, Phys. Lett. B 691 (2010) 111 [arXiv:0909.4031] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. J. Teschner, Quantization of the Hitchin moduli spaces, Liouville theory and the geometric Langlands correspondence I, arXiv:1005.2846 [INSPIRE].

  24. U. Bruzzo, F. Fucito, J.F. Morales and A. Tanzini, Multiinstanton calculus and equivariant cohomology, JHEP 05 (2003) 054 [hep-th/0211108] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. N. Caporaso, L. Griguolo, M. Mariño, S. Pasquetti and D. Seminara, Phase transitions, double-scaling limit and topological strings, Phys. Rev. D 75 (2007) 046004 [hep-th/0606120] [INSPIRE].

    ADS  Google Scholar 

  26. M.C. Cheng, R. Dijkgraaf and C. Vafa, Non-perturbative topological strings and conformal blocks, JHEP 09 (2011) 022 [arXiv:1010.4573] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. R. Dijkgraaf and C. Vafa, Toda theories, matrix models, topological strings and \( \mathcal{N} = {2} \) gauge systems, arXiv:0909.2453 [INSPIRE].

  28. K. Maruyoshi and F. Yagi, Seiberg-Witten curve via generalized matrix model, JHEP 01 (2011) 042 [arXiv:1009.5553] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. G. Bonelli, K. Maruyoshi, A. Tanzini and F. Yagi, Generalized matrix models and AGT correspondence at all genera, JHEP 07 (2011) 055 [arXiv:1011.5417] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. T. Dimofte, S. Gukov and L. Hollands, Vortex counting and Lagrangian 3-manifolds, Lett. Math. Phys. 98 (2011) 225 [arXiv:1006.0977] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Moduli space of non-Abelian vortices, Phys. Rev. Lett. 96 (2006) 161601 [hep-th/0511088] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Solitons in the Higgs phase: the moduli matrix approach, J. Phys. A 39 (2006) R315 [hep-th/0602170] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  33. V. Fateev and A. Litvinov, Correlation functions in conformal Toda field theory. I, JHEP 11 (2007) 002 [arXiv:0709.3806] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. V.A. Fateev, A. Litvinov, A. Neveu and E. Onofri, Differential equation for four-point correlation function in Liouville field theory and elliptic four-point conformal blocks, J. Phys. A 42 (2009) 304011 [arXiv:0902.1331] [INSPIRE].

    MathSciNet  Google Scholar 

  35. R. Flume and R. Poghossian, An algorithm for the microscopic evaluation of the coefficients of the Seiberg-Witten prepotential, Int. J. Mod. Phys. A 18 (2003) 2541 [hep-th/0208176] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. F. Fucito, J.F. Morales, R. Poghossian and A. Tanzini, \( \mathcal{N} = {1} \) superpotentials from multi-instanton calculus, JHEP 01 (2006) 031 [hep-th/0510173] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. D. Gaiotto, \( \mathcal{N} = {2} \) dualities, arXiv:0904.2715 [INSPIRE].

  38. A.A. Gerasimov and D.R. Lebedev, On topological field theory representation of higher analogs of classical special functions, JHEP 09 (2011) 076 [arXiv:1011.0403] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. A. Givental, A mirror theorem for toric complete intersections, in Topological field theory, primitive forms and related topics, Kyoto Japan (1996) [Progr. Math. 160 (1998) 141] [alg-geom/9701016].

  40. A. Givental and Y.-P. Lee, Quantum K-theory on flag manifolds, finite-difference Toda lattices and quantum groups, math.AG/0108105.

  41. A. Hanany and K. Hori, Branes and \( \mathcal{N} = {2} \) theories in two-dimensions, Nucl. Phys. B 513 (1998) 119 [hep-th/9707192] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. A. Hanany and D. Tong, Vortices, instantons and branes, JHEP 07 (2003) 037 [hep-th/0306150] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. R. Auzzi, S. Bolognesi, J. Evslin, K. Konishi and A. Yung, Non-Abelian superconductors: vortices and confinement in \( \mathcal{N} = {2} \) SQCD, Nucl. Phys. B 673 (2003) 187 [hep-th/0307287] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. M. Shifman and A. Yung, Non-Abelian string junctions as confined monopoles, Phys. Rev. D 70 (2004) 045004 [hep-th/0403149] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  45. A. Hanany and D. Tong, Vortex strings and four-dimensional gauge dynamics, JHEP 04 (2004) 066 [hep-th/0403158] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. T. Fujimori, T. Kimura, M. Nitta and K. Ohashi, Vortex counting from field theory, JHEP 06 (2012) 028 [arXiv:1204.1968] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. A. Iqbal and A.-K. Kashani-Poor, The vertex on a strip, Adv. Theor. Math. Phys. 10 (2006) 317 [hep-th/0410174] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  48. S.H. Katz, A. Klemm and C. Vafa, Geometric engineering of Quantum Field Theories, Nucl. Phys. B 497 (1997) 173 [hep-th/9609239] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. C. Kozcaz, S. Pasquetti and N. Wyllard, A & B model approaches to surface operators and Toda theories, JHEP 08 (2010) 042 [arXiv:1004.2025] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. A. Mironov and A. Morozov, The power of Nekrasov functions, Phys. Lett. B 680 (2009) 188 [arXiv:0908.2190] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. A. Mironov and A. Morozov, On AGT relation in the case of U(3), Nucl. Phys. B 825 (2010) 1 [arXiv:0908.2569] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  53. N.A. Nekrasov and S.L. Shatashvili, Quantization of integrable systems and four dimensional gauge theories, arXiv:0908.4052 [INSPIRE].

  54. R. Poghossian, Deforming SW curve, JHEP 04 (2011) 033 [arXiv:1006.4822] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  55. R. Santachiara and A. Tanzini, Moore-Read fractional quantum Hall wavefunctions and SU(2) quiver gauge theories, Phys. Rev. D 82 (2010) 126006 [arXiv:1002.5017] [INSPIRE].

    ADS  Google Scholar 

  56. S. Shadchin, On F-term contribution to effective action, JHEP 08 (2007) 052 [hep-th/0611278] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. E. Witten, Topological σ-models, Commun. Math. Phys. 118 (1988) 411 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500 (1997) 3 [hep-th/9703166] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. E. Witten, Surface operators in gauge theory, Fortsch. Phys. 55 (2007) 545 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. S. Gukov and E. Witten, Rigid surface operators, arXiv:0804.1561 [INSPIRE].

  61. N. Wyllard, A N−1 conformal Toda field theory correlation functions from conformal \( \mathcal{N} = {2} \) SU(N) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  62. Y. Yoshida, Localization of vortex partition functions in \( \mathcal{N} = \left( {{2,2}} \right) \) super Yang-Mills theory, arXiv:1101.0872 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Bonelli.

Additional information

ArXiv ePrint: 1102.0184

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonelli, G., Tanzini, A. & Zhao, J. Vertices, vortices & interacting surface operators. J. High Energ. Phys. 2012, 178 (2012). https://doi.org/10.1007/JHEP06(2012)178

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2012)178

Keywords

Navigation