Skip to main content
Log in

Quantum computation vs. firewalls

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In this paper we discuss quantum computational restrictions on the types of thought experiments recently used by Almheiri, Marolf, Polchinski, and Sully to argue against the smoothness of black hole horizons. We argue that the quantum computations required to do these experiments would take a time which is exponential in the entropy of the black hole under study, and we show that for a wide variety of black holes this prevents the experiments from being done. We interpret our results as motivating a broader type of nonlocality than is usually considered in the context of black hole thought experiments, and claim that once this type of nonlocality is allowed there may be no need for firewalls. Our results do not threaten the unitarity of black hole evaporation or the ability of advanced civilizations to test it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black Holes: Complementarity or Firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].

    Article  ADS  Google Scholar 

  2. S.L. Braunstein, S. Pirandola and K. Zyczkowski, Entangled black holes as ciphers of hidden information, Physical Review Letters 110, 101301 (2013) [arXiv:0907.1190] [INSPIRE].

    Article  ADS  Google Scholar 

  3. P. Hayden and J. Preskill, Black holes as mirrors: Quantum information in random subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. S. Hawking, Breakdown of Predictability in Gravitational Collapse, Phys. Rev. D 14 (1976) 2460 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. L. Susskind, L. Thorlacius and J. Uglum, The stretched horizon and black hole complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. L. Susskind and L. Thorlacius, Gedanken experiments involving black holes, Phys. Rev. D 49 (1994) 966 [hep-th/9308100] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. D.A. Lowe, J. Polchinski, L. Susskind, L. Thorlacius and J. Uglum, Black hole complementarity versus locality, Phys. Rev. D 52 (1995) 6997 [hep-th/9506138] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. J. Polchinski, String theory and black hole complementarity, hep-th/9507094 [INSPIRE].

  9. D. Harlow and L. Susskind, Crunches, Hats and a Conjecture, arXiv:1012.5302 [INSPIRE].

  10. T. Banks and W. Fischler, An holographic cosmology, hep-th/0111142 [INSPIRE].

  11. T. Banks, Holographic Space-Time: The Takeaway, arXiv:1109.2435 [INSPIRE].

  12. T. Banks and W. Fischler, Holographic Space-Time Does Not Predict Firewalls, arXiv:1208.4757 [INSPIRE].

  13. A.R. Brown, Tensile Strength and the Mining of Black Holes, arXiv:1207.3342 [INSPIRE].

  14. R. Bousso, Complementarity Is Not Enough, arXiv:1207.5192 [INSPIRE].

  15. D. Harlow, Complementarity, not Firewalls, arXiv:1207.6243.

  16. K. Papadodimas and S. Raju, An Infalling Observer in AdS/CFT, arXiv:1211.6767 [INSPIRE].

  17. T. Jacobson, Boundary unitarity without firewalls, arXiv:1212.6944 [INSPIRE].

  18. L. Susskind, The Transfer of Entanglement: The Case for Firewalls, arXiv:1210.2098 [INSPIRE].

  19. G.T. Horowitz and J.M. Maldacena, The black hole final state, JHEP 02 (2004) 008 [hep-th/0310281] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. J. Preskill, P. Schwarz, A.D. Shapere, S. Trivedi and F. Wilczek, Limitations on the statistical description of black holes, Mod. Phys. Lett. A 6 (1991) 2353 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. J.M. Maldacena, J. Michelson and A. Strominger, Anti-de Sitter fragmentation, JHEP 02 (1999) 011 [hep-th/9812073] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. L. Dyson, M. Kleban and L. Susskind, Disturbing implications of a cosmological constant, JHEP 10 (2002) 011 [hep-th/0208013] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. S. Aaronson, NP-complete problems and physical reality, Sigact News (2005) [quant-ph/0502072] [INSPIRE].

  24. J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. Y. Nomura, J. Varela and S.J. Weinberg, Complementarity Endures: No Firewall for an Infalling Observer, JHEP 03 (2013) 059 [arXiv:1207.6626] [INSPIRE].

    Article  ADS  Google Scholar 

  26. S.D. Mathur and D. Turton, Comments on black holes I: The possibility of complementarity, arXiv:1208.2005 [INSPIRE].

  27. I. Bena, A. Puhm and B. Vercnocke, Non-extremal Black Hole Microstates: Fuzzballs of Fire or Fuzzballs of Fuzz?, JHEP 12 (2012) 014 [arXiv:1208.3468] [INSPIRE].

    Article  ADS  Google Scholar 

  28. A. Giveon and N. Itzhaki, String Theory Versus Black Hole Complementarity, JHEP 12 (2012) 094 [arXiv:1208.3930] [INSPIRE].

    Article  ADS  Google Scholar 

  29. B.D. Chowdhury and A. Puhm, Is Alice burning or fuzzing?, arXiv:1208.2026 [INSPIRE].

  30. S.G. Avery, B.D. Chowdhury and A. Puhm, Unitarity and fuzzball complementarity:Alice fuzzes but may not even know it!’, arXiv:1210.6996 [INSPIRE].

  31. S. Hossenfelder, Comment on the black hole firewall, arXiv:1210.5317 [INSPIRE].

  32. D.-i. Hwang, B.-H. Lee and D.-h. Yeom, Is the firewall consistent?: Gedanken experiments on black hole complementarity and firewall proposal, JCAP 01 (2013) 005 [arXiv:1210.6733] [INSPIRE].

    Article  ADS  Google Scholar 

  33. K. Larjo, D.A. Lowe and L. Thorlacius, Black holes without firewalls, arXiv:1211.4620 [INSPIRE].

  34. D.N. Page, Hyper-Entropic Gravitational Fireballs (Grireballs) with Firewalls, JCAP 04 (2013) 037 [arXiv:1211.6734] [INSPIRE].

    Article  ADS  Google Scholar 

  35. S.B. Giddings, Nonviolent nonlocality, arXiv:1211.7070 [INSPIRE].

  36. D.N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71 (1993) 1291 [gr-qc/9305007] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. S.D. Mathur, The information paradox: A pedagogical introduction, Class. Quant. Grav. 26 (2009) 224001 [arXiv:0909.1038] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. E. Lieb and M. Ruskai, Proof of the strong subadditivity of quantum-mechanical entropy, J. Math. Phys. 14 (1973) 1938 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. C.A. Fuchs, Distinguishability and accessible information in quantum theory, quant-ph/9601020 [INSPIRE].

  40. P. Hayden, D. Leung, P. Shor and A. Winter, Randomizing quantum states: Constructions and applications, Commun. Math. Phys. 250 (2004) 371.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. A. Kitaev, A. Shen and M.N. Vyalyi, Classical and Quantum Computation. Volume 47, American Mathematical Society, U.S.A. (2002).

    MATH  Google Scholar 

  42. J. Preskill, Lecture Notes on Quantum Computation, http://www.theory.caltech.edu/people/preskill/ph229/, (1998).

  43. M. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, (2010).

  44. T. Banks, W. Fischler, S. Shenker and L. Susskind, M theory as a matrix model: A conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  45. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  46. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  47. R.P. Feynman, Simulating physics with computers, Int. J. Theor. Phys. 21 (1982) 467 [INSPIRE].

    Article  MathSciNet  Google Scholar 

  48. S. Lloyd et. al., Universal quantum simulators, Science 273 (1996) 1073.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. D.S. Abrams and S. Lloyd, Simulation of many body Fermi systems on a universal quantum computer, Phys. Rev. Lett. 79 (1997) 2586 [quant-ph/9703054] [INSPIRE].

    Article  ADS  Google Scholar 

  50. S.P. Jordan, K.S. Lee and J. Preskill, Quantum Algorithms for Quantum Field Theories, Science 336 (2012) 1130 [arXiv:1111.3633] [INSPIRE].

    Article  ADS  Google Scholar 

  51. D. Kabat, G. Lifschytz and D.A. Lowe, Constructing local bulk observables in interacting AdS/CFT, Phys. Rev. D 83 (2011) 106009 [arXiv:1102.2910] [INSPIRE].

    ADS  Google Scholar 

  52. E. Verlinde and H. Verlinde, Black Hole Entanglement and Quantum Error Correction, arXiv:1211.6913 [INSPIRE].

  53. P. Shor, Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A 52 (1995) 2493.

    ADS  Google Scholar 

  54. K. Kraus, A. Böhm, J. Dollard and W. Wootters, States, effects, and operations fundamental notions of quantum theory, Lect. Notes Phys. 190 (1983).

  55. C.H. Bennett, D.P. DiVincenzo, J.A. Smolin and W.K. Wootters, Mixed state entanglement and quantum error correction, Phys. Rev. A 54 (1996) 3824 [quant-ph/9604024] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  56. E. Knill and R. Laflamme, Theory of quantum error-correcting codes, Phys. Rev. A 55 (1997) 900 [quant-ph/9604034] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  57. D. Gottesman, Stabilizer codes and quantum error correction, quant-ph/9705052 [INSPIRE].

  58. E. Berlekamp, R. McEliece and H. Van Tilborg, On the inherent intractability of certain coding problems (corresp.), IEEE Trans. Inf. Theory 24 (1978) 384.

    Article  MATH  Google Scholar 

  59. M. Hsieh and F. Le Gall, Np-hardness of decoding quantum error-correction codes, Phys. Rev. A 83 (2011) 052331.

    ADS  Google Scholar 

  60. F. Denef and M.R. Douglas, Computational complexity of the landscape. I., Annals Phys. 322 (2007) 1096 [hep-th/0602072] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. K.-Y. Kuo and C.-C. Lu, On the hardness of decoding quantum stabilizer codes under the depolarizing channel, in 2012 International Symposium on Information Theory and its Applications (ISITA) 2012, pg. 208-211.

  62. C. Moore and S. Mertens, The Nature of Computation, Oxford University Press, Oxford U.K., (2011).

    MATH  Google Scholar 

  63. D.N. Page, Particle Emission Rates from a Black Hole: Massless Particles from an Uncharged, Nonrotating Hole, Phys. Rev. D 13 (1976) 198 [INSPIRE].

    ADS  Google Scholar 

  64. S. Goldwasser, S. Micali and C. Rackoff, The knowledge complexity of interactive proof systems, SIAM J. Comput. 18 (1989) 186.

    Article  MathSciNet  MATH  Google Scholar 

  65. J. Watrous, Limits on the power of quantum statistical zero-knowledge, in proceedings of The 43rd Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2002, pg. 459-468.

  66. J. Watrous, Zero-knowledge against quantum attacks, SIAM J. Comput. 39 (2009) 25.

    Article  MathSciNet  MATH  Google Scholar 

  67. P. Hayden and B. Swingle, Quantum error correction and QSZK, in preparation.

  68. P. Hayden, K. Milner and M.M. Wilde, Two-message quantum interactive proofs and the quantum separability problem, arXiv:1211.6120.

  69. B. Schumacher, Quantum coding, Phys. Rev. A 51 (1995) 2738.

    MathSciNet  ADS  Google Scholar 

  70. A.Y. Kitaev, Quantum measurements and the Abelian stabilizer problem, quant-ph/9511026 [INSPIRE].

  71. D. Bacon, A. Childs and W. Van Dam, From optimal measurement to efficient quantum algorithms for the hidden subgroup problem over semidirect product groups, in FOCS 2005 - 46th Annual IEEE Symposium on Foundations of Computer Science, 2005, pg. 469-478.

  72. G. Kuperberg, A subexponential-time quantum algorithm for the dihedral hidden subgroup problem, SIAM J. Comput. 35 (2005) 170.

    Article  MathSciNet  MATH  Google Scholar 

  73. G. Ivanyos, L. Sanselme and M. Santha, An efficient quantum algorithm for the hidden subgroup problem in nil-2 groups, LATIN 2008: Theoretical Informatics (2008) 759.

  74. M. Ettinger and P. Hoyer, A quantum observable for the graph isomorphism problem, quant-ph/9901029 [INSPIRE].

  75. C. Moore, A. Russell and L. Schulman, The symmetric group defies strong fourier sampling, SIAM J. Comput. 37 (2008) 1842.

    Article  MathSciNet  MATH  Google Scholar 

  76. C. Moore, A. Russell and P. Sniady, On the impossibility of a quantum sieve algorithm for graph isomorphism, SIAM J. Comput. 39 (2010) 2377.

    Article  MathSciNet  MATH  Google Scholar 

  77. C. Moore, A. Russell and U. Vazirani, A classical one-way function to confound quantum adversaries, quant-ph/0701115.

  78. S. Aaronson, Quantum lower bound for the collision problem, in proceedings of The thirty-fourth annual ACM symposium on Theory of computing, 2002, pg. 635-642.

  79. L. Fidkowski, V. Hubeny, M. Kleban and S. Shenker, The black hole singularity in AdS/CFT, JHEP 02 (2004) 014 [hep-th/0306170] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  80. G. Horowitz, A. Lawrence and E. Silverstein, Insightful D-branes, JHEP 07 (2009) 057 [arXiv:0904.3922] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  81. D.N. Page, Thermodynamics of near extreme black holes, hep-th/0012020 [INSPIRE].

  82. S.P. Kim and D.N. Page, Magnetic black holes are also unstable, J. Korean Phys. Soc. 45 (2004) S59 [gr-qc/0403005] [INSPIRE].

    Google Scholar 

  83. G.T. Horowitz and A. Strominger, Black strings and P-branes, Nucl. Phys. B 360 (1991) 197 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  84. S. Gubser, I.R. Klebanov and A. Peet, Entropy and temperature of black 3-branes, Phys. Rev. D 54 (1996) 3915 [hep-th/9602135] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  85. R.L. Arnowitt, S. Deser and C.W. Misner, Coordinate invariance and energy expressions in general relativity, Phys. Rev. 122 (1961) 997 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  86. S. Hawking and D.N. Page, Thermodynamics of Black Holes in anti-de Sitter Space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  87. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  88. T. Nishioka, S. Ryu and T. Takayanagi, Holographic Superconductor/Insulator Transition at Zero Temperature, JHEP 03 (2010) 131 [arXiv:0911.0962] [INSPIRE].

    Article  ADS  Google Scholar 

  89. D. Anninos, F. Denef and D. Harlow, The Wave Function of Vasilievs Universe - A Few Slices Thereof, arXiv:1207.5517 [INSPIRE].

  90. S.R. Das, G.W. Gibbons and S.D. Mathur, Universality of low-energy absorption cross-sections for black holes, Phys. Rev. Lett. 78 (1997) 417 [hep-th/9609052] [INSPIRE].

    Article  ADS  Google Scholar 

  91. I.R. Klebanov, World volume approach to absorption by nondilatonic branes, Nucl. Phys. B 496 (1997) 231 [hep-th/9702076] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  92. S. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206-206] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  93. S.S. Gubser and I.R. Klebanov, Absorption by branes and Schwinger terms in the world volume theory, Phys. Lett. B 413 (1997) 41 [hep-th/9708005] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  94. L. Susskind, Black Hole Complementarity and the Harlow-Hayden Conjecture, arXiv:1301.4505 [INSPIRE].

  95. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  96. C.G. Callan and J.M. Maldacena, Brane death and dynamics from the Born-Infeld action, Nucl. Phys. B 513 (1998) 198 [hep-th/9708147] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  97. K.G. Savvidy and G.K. Savvidy, Neumann boundary conditions from Born-Infeld dynamics, Nucl. Phys. B 561 (1999) 117 [hep-th/9902023] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Harlow.

Additional information

Dedicated to John Preskill on the occasion of his 60th birthday

ArXiv ePrint: 1301.4504

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harlow, D., Hayden, P. Quantum computation vs. firewalls. J. High Energ. Phys. 2013, 85 (2013). https://doi.org/10.1007/JHEP06(2013)085

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2013)085

Keywords

Navigation