Skip to main content
Log in

On the stability of non-supersymmetric AdS vacua

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider two infinite families of Non-Supersymmetric AdS 4 vacua, called Type 2) and Type 3) vacua, that arise in massive IIA supergravity with flux. We show that both families are perturbatively stable. We then examine non-perturbative decays of these vacua to other supersymmetric and non-supersymmetric AdS 4 vacua mediated by instantons in the thin wall approximation. We find that many decays are ruled out since the tension of the interpolating domain wall is too big compared to the energy difference in AdS units. In fact, within our approximations no decays of Type 2) vacua are allowed, although some decays are only marginally forbidden. This can be understood in terms of a “pairing symmetry” in the landscape which relate Type 2) vacua with supersymmetric ones of the same energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. DeWolfe, A. Giryavets, S. Kachru and W. Taylor, Type IIA moduli stabilization, JHEP 07 (2005) 066 [hep-th/0505160] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  2. G.T. Horowitz, J. Orgera and J. Polchinski, Nonperturbative Instability of AdS 5 × S 5 /Z k , Phys. Rev. D 77 (2008) 024004 [arXiv:0709.4262] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. S.R. Coleman and F. De Luccia, Gravitational effects on and of vacuum decay, Phys. Rev. D 21 (1980) 3305 [SPIRES].

    ADS  Google Scholar 

  4. M. Duff, M-theory on manifolds of G 2 holonomy: the first twenty years, hep-th/0201062 [SPIRES].

  5. A. Dabholkar, Microstates of non-supersymmetric black holes, Phys. Lett. B 402 (1997) 53 [hep-th/9702050] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  6. P.K. Tripathy and S.P. Trivedi, Non-supersymmetric attractors in string theory, JHEP 03 (2006) 022 [hep-th/0511117] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. J. Polchinski and E. Silverstein, Dual purpose landscaping tools: small extra dimensions in AdS/CFT, arXiv:0908.0756 [SPIRES].

  8. D. Gaiotto and A. Tomasiello, The gauge dual of Romans mass, JHEP 01 (2010) 015 [arXiv:0901.0969] [SPIRES].

    Article  Google Scholar 

  9. M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733 [hep-th/0610102] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. T.W. Grimm and J. Louis, The effective action of type IIA Calabi-Yau orientifolds, Nucl. Phys. B 718 (2005) 153 [hep-th/0412277] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. J.-P. Derendinger, C. Kounnas, P.M. Petropoulos and F. Zwirner, Superpotentials in IIA compactifications with general fluxes, Nucl. Phys. B 715 (2005) 211 [hep-th/0411276] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. G. Villadoro and F. Zwirner, N = 1 effective potential from dual type-IIA D6/O6 orientifolds with general fluxes, JHEP 06 (2005) 047 [hep-th/0503169] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. S. Kachru and A.-K. Kashani-Poor, Moduli potentials in type IIA compactifications with RR and NS flux, JHEP 03 (2005) 066 [hep-th/0411279] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. L.J. Romans, Massive N = 2a supergravity in ten-dimensions, Phys. Lett. B 169 (1986) 374 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  15. D. Lüst and D. Tsimpis, Supersymmetric AdS 4 compactifications of IIA supergravity, JHEP 02 (2005) 027 [hep-th/0412250] [SPIRES].

    Article  Google Scholar 

  16. M. Dine, G. Festuccia and A. Morisse, The fate of nearly supersymmetric vacua, JHEP 09 (2009) 013 [arXiv:0901.1169] [SPIRES].

    ADS  Google Scholar 

  17. D. Harlow, Metastability in Anti de Sitter space, arXiv:1003.5909 [SPIRES].

  18. D. Lüst, F. Marchesano, L. Martucci and D. Tsimpis, Generalized non-supersymmetric flux vacua, JHEP 11 (2008) 021 [arXiv:0807.4540] [SPIRES].

    Article  Google Scholar 

  19. U.H. Danielsson, S.S. Haque, G. Shiu and T. Van Riet, Towards classical de Sitter solutions in string theory, JHEP 09 (2009) 114 [arXiv:0907.2041] [SPIRES].

    Article  ADS  Google Scholar 

  20. P. Koerber and S. Körs, A landscape of non-supersymmetric AdS vacua on coset manifolds, Phys. Rev. D 81 (2010) 105006 [arXiv:1001.0003] [SPIRES].

    ADS  Google Scholar 

  21. L.J. Dixon, J.A. Harvey, C. Vafa and E. Witten, Strings on orbifolds, Nucl. Phys. B 261 (1985) 678 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. A. Strominger, Topology of superstring compactification, in Unified string theories, M. Green and D. Gross editors, World Scientific, Singapore (1986).

    Google Scholar 

  23. S. Chiossi and S. Salamon, T he intrinsic torsion of SU(3) and G 2 structures, math/0202282.

  24. B.S. Acharya, F. Benini and R. Valandro, Fixing moduli in exact type IIA flux vacua, JHEP 02 (2007) 018 [hep-th/0607223] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. J.D. Brown and C. Teitelboim, Neutralization of the cosmological constant by membrane creation, Nucl. Phys. B 297 (1988) 787 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. J. Gutowski, G. Papadopoulos and P.K. Townsend, Supersymmetry and generalized calibrations, Phys. Rev. D 60 (1999) 106006 [hep-th/9905156] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  27. S.S. Gubser, Special holonomy in string theory and M-theory, hep-th/0201114 [SPIRES].

  28. O.J. Ganor and J. Sonnenschein, On the strong coupling dynamics of heterotic string theory on C 3 /Z 3 , JHEP 05 (2002) 018 [hep-th/0202206] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. O. Aharony, Y.E. Antebi and M. Berkooz, On the conformal field theory duals of type IIA AdS 4 flux compactifications, JHEP 02 (2008) 093 [arXiv:0801.3326] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. S. Weinberg, Cosmological constraints on the scale of supersymmetry breaking, Phys. Rev. Lett. 48 (1982) 1303 [SPIRES].

    Article  ADS  Google Scholar 

  31. M. Cvetič, S. Griffies and S.-J. Rey, Nonperturbative stability of supergravity and superstring vacua, Nucl. Phys. B 389 (1993) 3 [hep-th/9206004] [SPIRES].

    Article  ADS  Google Scholar 

  32. M. Cvetič, S. Griffies and S.-J. Rey, Static domain walls in N = 1 supergravity, Nucl. Phys. B 381 (1992) 301 [hep-th/9201007] [SPIRES].

    Article  ADS  Google Scholar 

  33. M. Cvetič and H.H. Soleng, Supergravity domain walls, Phys. Rept. 282 (1997) 159 [hep-th/9604090] [SPIRES].

    Article  ADS  Google Scholar 

  34. A. Ceresole, G. Dall’Agata, A. Giryavets, R. Kallosh and A.D. Linde, Domain walls, near-BPS bubbles and probabilities in the landscape, Phys. Rev. D 74 (2006) 086010 [hep-th/0605266] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  35. E. Witten, Instability of the Kaluza-Klein vacuum, Nucl. Phys. B 195 (1982) 481 [SPIRES].

    Article  ADS  Google Scholar 

  36. J. Polchinski, String theory. Volume II, Cambridge University Press, Cambridge U.K. (1998).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prithvi Narayan.

Additional information

ArXiv ePrint: 1002.4498

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narayan, P., Trivedi, S.P. On the stability of non-supersymmetric AdS vacua. J. High Energ. Phys. 2010, 89 (2010). https://doi.org/10.1007/JHEP07(2010)089

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2010)089

Keywords

Navigation