Skip to main content
Log in

Space-like (vs. time-like) collinear limits in QCD: is factorization violated?

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider the singular behaviour of QCD scattering amplitudes in kinematical configurations where two or more momenta of the external partons become collinear. At the tree level, this behaviour is known to be controlled by factorization formulae in which the singular collinear factor is universal (process independent). We show that this strict (process-independent) factorization is not valid at one-loop and higher-loop orders in the case of the collinear limit in space-like regions (e.g., collinear radiation from initial-state partons). We introduce a generalized version of all-order collinear factorization, in which the space-like singular factors retain some dependence on the momentum and colour charge of the non-collinear partons. We present explicit results on one-loop and two-loop amplitudes for both the two-parton and multiparton collinear limits. At the level of squared amplitudes and, more generally, cross sections in hadron-hadron collisions, the violation of strict collinear factorization has implications on the non-abelian structure of logarithmically-enhanced terms in perturbative calculations (starting from the next-to-next-to-leading order) and on various factorization issues of mass singularities (starting from the next-to-next-to-next-to-leading order).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Catani, The Singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].

    Article  ADS  Google Scholar 

  2. G.F. Sterman and M.E. Tejeda-Yeomans, Multiloop amplitudes and resummation, Phys. Lett. B 552 (2003) 48 [hep-ph/0210130] [INSPIRE].

    Article  ADS  Google Scholar 

  3. S.M. Aybat, L.J. Dixon and G.F. Sterman, The Two-loop anomalous dimension matrix for soft gluon exchange, Phys. Rev. Lett. 97 (2006) 072001 [hep-ph/0606254] [INSPIRE].

    Article  ADS  Google Scholar 

  4. S.M. Aybat, L.J. Dixon and G.F. Sterman, The Two-loop soft anomalous dimension matrix and resummation at next-to-next-to leading pole, Phys. Rev. D 74 (2006) 074004 [hep-ph/0607309] [INSPIRE].

    ADS  Google Scholar 

  5. L.J. Dixon, L. Magnea and G.F. Sterman, Universal structure of subleading infrared poles in gauge theory amplitudes, JHEP 08 (2008) 022 [arXiv:0805.3515] [INSPIRE].

    Article  ADS  Google Scholar 

  6. T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett. 102 (2009) 162001 [arXiv:0901.0722] [INSPIRE].

    Article  ADS  Google Scholar 

  7. E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP 03 (2009) 079 [arXiv:0901.1091] [INSPIRE].

    Article  ADS  Google Scholar 

  8. T. Becher and M. Neubert, On the Structure of Infrared Singularities of Gauge-Theory Amplitudes, JHEP 06 (2009) 081 [arXiv:0903.1126] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. L.J. Dixon, E. Gardi and L. Magnea, On soft singularities at three loops and beyond, JHEP 02 (2010) 081 [arXiv:0910.3653] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. A. Bassetto, M. Ciafaloni and G. Marchesini, Jet Structure and Infrared Sensitive Quantities in Perturbative QCD, Phys. Rept. 100 (1983) 201 [INSPIRE].

    Article  ADS  Google Scholar 

  11. Yu.L. Dokshitzer, V.A. Khoze, A.H. Mueller and S.I. Troian, Basics of Perturbative QCD, Editions Frontières, Gif-sur-Yvette (1991).

    Google Scholar 

  12. F.A. Berends and W. Giele, Multiple Soft Gluon Radiation in Parton Processes, Nucl. Phys. B 313 (1989) 595 [INSPIRE].

    Article  ADS  Google Scholar 

  13. S. Catani and M. Grazzini, Infrared factorization of tree level QCD amplitudes at the next-to-next-to-leading order and beyond, Nucl. Phys. B 570 (2000) 287 [hep-ph/9908523] [INSPIRE].

    Article  ADS  Google Scholar 

  14. Z. Bern, V. Del Duca and C.R. Schmidt, The Infrared behavior of one loop gluon amplitudes at next-to-next-to-leading order, Phys. Lett. B 445 (1998) 168 [hep-ph/9810409] [INSPIRE].

    Article  ADS  Google Scholar 

  15. Z. Bern, V. Del Duca, W.B. Kilgore and C.R. Schmidt, The Infrared behavior of one loop QCD amplitudes at next-to-next-to leading order, Phys. Rev. D 60 (1999) 116001 [hep-ph/9903516] [INSPIRE].

    ADS  Google Scholar 

  16. S. Catani and M. Grazzini, The soft gluon current at one loop order, Nucl. Phys. B 591 (2000) 435 [hep-ph/0007142] [INSPIRE].

    Article  ADS  Google Scholar 

  17. S. Badger and E.N. Glover, Two loop splitting functions in QCD, JHEP 07 (2004) 040 [hep-ph/0405236] [INSPIRE].

    Article  ADS  Google Scholar 

  18. G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].

    Article  ADS  Google Scholar 

  19. F.A. Berends and W. Giele, Recursive Calculations for Processes with n Gluons, Nucl. Phys. B 306 (1988) 759 [INSPIRE].

    Article  ADS  Google Scholar 

  20. M.L. Mangano and S.J. Parke, Multiparton amplitudes in gauge theories, Phys. Rept. 200 (1991) 301 [hep-th/0509223] [INSPIRE].

    Article  ADS  Google Scholar 

  21. J.M. Campbell and E.N. Glover, Double unresolved approximations to multiparton scattering amplitudes, Nucl. Phys. B 527 (1998) 264 [hep-ph/9710255] [INSPIRE].

    Article  ADS  Google Scholar 

  22. S. Catani and M. Grazzini, Collinear factorization and splitting functions for next-to-next-to-leading order QCD calculations, Phys. Lett. B 446 (1999) 143 [hep-ph/9810389] [INSPIRE].

    Article  ADS  Google Scholar 

  23. V. Del Duca, A. Frizzo and F. Maltoni, Factorization of tree QCD amplitudes in the high-energy limit and in the collinear limit, Nucl. Phys. B 568 (2000) 211 [hep-ph/9909464] [INSPIRE].

    Article  ADS  Google Scholar 

  24. T. Birthwright, E.N. Glover, V. Khoze and P. Marquard, Multi-gluon collinear limits from MHV diagrams, JHEP 05 (2005) 013 [hep-ph/0503063] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. T. Birthwright, E.N. Glover, V. Khoze and P. Marquard, Collinear limits in QCD from MHV rules, JHEP 07 (2005) 068 [hep-ph/0505219] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. Z. Bern, G. Chalmers, L.J. Dixon and D.A. Kosower, One loop N gluon amplitudes with maximal helicity violation via collinear limits, Phys. Rev. Lett. 72 (1994) 2134 [hep-ph/9312333] [INSPIRE].

    Article  ADS  Google Scholar 

  27. Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. Z. Bern and G. Chalmers, Factorization in one loop gauge theory, Nucl. Phys. B 447 (1995) 465 [hep-ph/9503236] [INSPIRE].

    Article  ADS  Google Scholar 

  29. D.A. Kosower and P. Uwer, One loop splitting amplitudes in gauge theory, Nucl. Phys. B 563 (1999) 477 [hep-ph/9903515] [INSPIRE].

    Article  ADS  Google Scholar 

  30. S. Catani, D. de Florian and G. Rodrigo, The Triple collinear limit of one loop QCD amplitudes, Phys. Lett. B 586 (2004) 323 [hep-ph/0312067] [INSPIRE].

    Article  ADS  Google Scholar 

  31. Z. Bern, L.J. Dixon and D.A. Kosower, Two-loop ggg splitting amplitudes in QCD, JHEP 08 (2004) 012 [hep-ph/0404293] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. D.A. Kosower, All order collinear behavior in gauge theories, Nucl. Phys. B 552 (1999) 319 [hep-ph/9901201] [INSPIRE].

    Article  ADS  Google Scholar 

  33. J.C. Collins, D.E. Soper and G.F. Sterman, Factorization of Hard Processes in QCD, in A.H. Mueller ed., Perturbative Quantum Chromodynamics, Adv. Ser. Direct. High Energy Phys. 5 (1988) 1, World Scientific, Singapore (1989) [hep-ph/0409313] [INSPIRE].

  34. C. Bomhof, P. Mulders and F. Pijlman, Gauge link structure in quark-quark correlators in hard processes, Phys. Lett. B 596 (2004) 277 [hep-ph/0406099] [INSPIRE].

    Article  ADS  Google Scholar 

  35. J. Collins and J.-W. Qiu, k T factorization is violated in production of high-transverse-momentum particles in hadron-hadron collisions, Phys. Rev. D 75 (2007) 114014 [arXiv:0705.2141] [INSPIRE].

    ADS  Google Scholar 

  36. J. Collins, 2-soft-gluon exchange and factorization breaking, arXiv:0708.4410 [INSPIRE].

  37. A. Bacchetta, C. Bomhof, P. Mulders and F. Pijlman, Single spin asymmetries in hadron-hadron collisions, Phys. Rev. D 72 (2005) 034030 [hep-ph/0505268] [INSPIRE].

    ADS  Google Scholar 

  38. C. Bomhof, P. Mulders and F. Pijlman, The Construction of gauge-links in arbitrary hard processes, Eur. Phys. J. C 47 (2006) 147 [hep-ph/0601171] [INSPIRE].

    Article  ADS  Google Scholar 

  39. W. Vogelsang and F. Yuan, Hadronic Dijet Imbalance and Transverse-Momentum Dependent Parton Distributions, Phys. Rev. D 76 (2007) 094013 [arXiv:0708.4398] [INSPIRE].

    ADS  Google Scholar 

  40. T.C. Rogers and P.J. Mulders, No Generalized TMD-Factorization in Hadro-Production of High Transverse Momentum Hadrons, Phys. Rev. D 81 (2010) 094006 [arXiv:1001.2977] [INSPIRE].

    ADS  Google Scholar 

  41. J.R. Forshaw, A. Kyrieleis and M.H. Seymour, Super-leading logarithms in non-global observables in QCD, JHEP 08 (2006) 059 [hep-ph/0604094] [INSPIRE].

    Article  ADS  Google Scholar 

  42. J. Forshaw, A. Kyrieleis and M.H. Seymour, Super-leading logarithms in non-global observables in QCD: Colour basis independent calculation, JHEP 09 (2008) 128 [arXiv:0808.1269] [INSPIRE].

    Article  ADS  Google Scholar 

  43. J. Keates and M.H. Seymour, Super-leading logarithms in non-global observables in QCD: Fixed order calculation, JHEP 04 (2009) 040 [arXiv:0902.0477] [INSPIRE].

    Article  ADS  Google Scholar 

  44. M.H. Seymour, Breakdown of Coherence?, arXiv:0710.2733 [INSPIRE], in proceedings of 12 th International Conference on Elastic and Diffractive Scattering: Forward Physics and QCD, J. Bartels, K. Borras, M. Diehl and H. Jung eds., Hamburg, Germany, 21–25 May 2007, pg. 507 DESY-PROC-2007-02 [arXiv:0712.3633].

  45. J. Forshaw and M.H. Seymour, Soft gluons and superleading logarithms in QCD, Nucl. Phys. Proc. Suppl. 191 (2009) 257 [arXiv:0901.3037] [INSPIRE].

    Article  ADS  Google Scholar 

  46. S. Catani and M.H. Seymour, The Dipole formalism for the calculation of QCD jet cross-sections at next-to-leading order, Phys. Lett. B 378 (1996) 287 [hep-ph/9602277] [INSPIRE].

    Article  ADS  Google Scholar 

  47. S. Catani and M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503-504] [hep-ph/9605323] [INSPIRE].

  48. L. Lewin, Dilogarithms and Associated Functions, Macdonald, London (1958).

    MATH  Google Scholar 

  49. L. Lewin, Polylogarithms and Associated Functions, North Holland, New York (1981).

  50. J.P. Ralston and B. Pire, Oscillatory scale breaking and the Chromo-Coulomb phase shift, Phys. Rev. Lett. 49 (1982) 1605 [INSPIRE].

    Article  ADS  Google Scholar 

  51. B. Pire and J.P. Ralston, Fixed angle elastic scattering and the Chromo-Coulomb phase shift, Phys. Lett. B 117 (1982) 233 [INSPIRE].

    Article  ADS  Google Scholar 

  52. S. Catani, M. Ciafaloni and G. Marchesini, Noncancelling infrared divergences in QCD coherent state, Nucl. Phys. B 264 (1986) 588 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. R. Bonciani, S. Catani, M.L. Mangano and P. Nason, Sudakov resummation of multiparton QCD cross-sections, Phys. Lett. B 575 (2003) 268 [hep-ph/0307035] [INSPIRE].

    Article  ADS  Google Scholar 

  54. S.M. Aybat and G.F. Sterman, Soft-Gluon Cancellation, Phases and Factorization with Initial-State Partons, Phys. Lett. B 671 (2009) 46 [arXiv:0811.0246] [INSPIRE].

    Article  ADS  Google Scholar 

  55. C.W. Bauer, B.O. Lange and G. Ovanesyan, On Glauber modes in Soft-Collinear Effective Theory, JHEP 07 (2011) 077 [arXiv:1010.1027] [INSPIRE].

    Article  ADS  Google Scholar 

  56. V. Del Duca, C. Duhr, E. Gardi, L. Magnea and C.D. White, An infrared approach to Reggeization, Phys. Rev. D 85 (2012) 071104 [arXiv:1108.5947] [INSPIRE].

    ADS  Google Scholar 

  57. V. Del Duca, C. Duhr, E. Gardi, L. Magnea and C.D. White, The Infrared structure of gauge theory amplitudes in the high-energy limit, JHEP 12 (2011) 021 [arXiv:1109.3581] [INSPIRE].

    Article  ADS  Google Scholar 

  58. Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].

    Article  ADS  Google Scholar 

  59. Z. Bern, L.J. Dixon and D.A. Kosower, Progress in one loop QCD computations, Ann. Rev. Nucl. Part. Sci. 46 (1996) 109 [hep-ph/9602280] [INSPIRE].

    Article  ADS  Google Scholar 

  60. Z. Kunszt, A. Signer and Z. Trócsányi, One loop helicity amplitudes for all 2 → 2 processes in QCD and N = 1 supersymmetric Yang-Mills theory, Nucl. Phys. B 411 (1994) 397 [hep-ph/9305239] [INSPIRE].

    Article  ADS  Google Scholar 

  61. S. Catani, M.H. Seymour and Z. Trócsányi, Regularization scheme independence and unitarity in QCD cross-sections, Phys. Rev. D 55 (1997) 6819 [hep-ph/9610553] [INSPIRE].

    ADS  Google Scholar 

  62. Z. Bern, A. De Freitas, L.J. Dixon and H. Wong, Supersymmetric regularization, two loop QCD amplitudes and coupling shifts, Phys. Rev. D 66 (2002) 085002 [hep-ph/0202271] [INSPIRE].

    ADS  Google Scholar 

  63. W. Giele and E.N. Glover, Higher order corrections to jet cross-sections in e + e annihilation, Phys. Rev. D 46 (1992) 1980 [INSPIRE].

    ADS  Google Scholar 

  64. Z. Kunszt, A. Signer and Z. Trócsányi, Singular terms of helicity amplitudes at one loop in QCD and the soft limit of the cross-sections of multiparton processes, Nucl. Phys. B 420 (1994) 550 [hep-ph/9401294] [INSPIRE].

    Article  ADS  Google Scholar 

  65. C. Anastasiou, E.N. Glover, C. Oleari and M. Tejeda-Yeomans, Two-loop QCD corrections to the scattering of massless distinct quarks, Nucl. Phys. B 601 (2001) 318 [hep-ph/0010212] [INSPIRE].

    Article  ADS  Google Scholar 

  66. C. Anastasiou, E.N. Glover, C. Oleari and M. Tejeda-Yeomans, Two loop QCD corrections to massless identical quark scattering, Nucl. Phys. B 601 (2001) 341 [hep-ph/0011094] [INSPIRE].

    Article  ADS  Google Scholar 

  67. C. Anastasiou, E.N. Glover, C. Oleari and M. Tejeda-Yeomans, Two loop QCD corrections to massless quark gluon scattering, Nucl. Phys. B 605 (2001) 486 [hep-ph/0101304] [INSPIRE].

    Article  ADS  Google Scholar 

  68. E.N. Glover, C. Oleari and M. Tejeda-Yeomans, Two loop QCD corrections to gluon-gluon scattering, Nucl. Phys. B 605 (2001) 467 [hep-ph/0102201] [INSPIRE].

    Article  ADS  Google Scholar 

  69. Z. Bern, A. De Freitas and L.J. Dixon, Two loop helicity amplitudes for gluon-gluon scattering in QCD and supersymmetric Yang-Mills theory, JHEP 03 (2002) 018 [hep-ph/0201161] [INSPIRE].

    Article  ADS  Google Scholar 

  70. Z. Bern, A. De Freitas and L.J. Dixon, Two loop helicity amplitudes for quark gluon scattering in QCD and gluino gluon scattering in supersymmetric Yang-Mills theory, JHEP 06 (2003) 028 [hep-ph/0304168] [INSPIRE].

    Article  ADS  Google Scholar 

  71. A. Sen, Asymptotic Behavior of the Wide Angle On-Shell Quark Scattering Amplitudes in Nonabelian Gauge Theories, Phys. Rev. D 28 (1983) 860 [INSPIRE].

    ADS  Google Scholar 

  72. S. Catani and M. Ciafaloni, Generalized coherent state for soft gluon emission, Nucl. Phys. B 249 (1985) 301 [INSPIRE].

    Article  ADS  Google Scholar 

  73. J. Botts and G.F. Sterman, Hard Elastic Scattering in QCD: Leading Behavior, Nucl. Phys. B 325 (1989) 62 [INSPIRE].

    Article  ADS  Google Scholar 

  74. S. Weinzierl, The Infrared structure of e + e  → 3 jets at NNLO reloaded, JHEP 07 (2009) 009 [arXiv:0904.1145] [INSPIRE].

    Article  ADS  Google Scholar 

  75. A. Gehrmann-De Ridder, T. Gehrmann and E.N. Glover, Antenna subtraction at NNLO, JHEP 09 (2005) 056 [hep-ph/0505111] [INSPIRE].

    Article  ADS  Google Scholar 

  76. A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, Infrared structure of e + e  → 3 jets at NNLO, JHEP 11 (2007) 058 [arXiv:0710.0346] [INSPIRE].

    Article  ADS  Google Scholar 

  77. S. Catani and M. Grazzini, QCD transverse-momentum resummation in gluon fusion processes, Nucl. Phys. B 845 (2011) 297 [arXiv:1011.3918] [INSPIRE].

    Article  ADS  Google Scholar 

  78. P.M. Nadolsky, C. Balázs, E.L. Berger and C.-P. Yuan, Gluon-gluon contributions to the production of continuum diphoton pairs at hadron colliders, Phys. Rev. D 76 (2007) 013008 [hep-ph/0702003] [INSPIRE].

    ADS  Google Scholar 

  79. D. de Florian and M. Grazzini, The Structure of large logarithmic corrections at small transverse momentum in hadronic collisions, Nucl. Phys. B 616 (2001) 247 [hep-ph/0108273] [INSPIRE].

    Article  ADS  Google Scholar 

  80. T. Gehrmann and P.F. Monni, Antenna subtraction at NNLO with hadronic initial states: real-virtual initial-initial configurations, JHEP 12 (2011) 049 [arXiv:1107.4037] [INSPIRE].

    Article  ADS  Google Scholar 

  81. C. Anastasiou, K. Melnikov and F. Petriello, Fully differential Higgs boson production and the di-photon signal through next-to-next-to-leading order, Nucl. Phys. B 724 (2005) 197 [hep-ph/0501130] [INSPIRE].

    Article  ADS  Google Scholar 

  82. C. Anastasiou, F. Herzog and A. Lazopoulos, The Fully differential decay rate of a Higgs boson to bottom-quarks at NNLO in QCD, JHEP 03 (2012) 035 [arXiv:1110.2368] [INSPIRE].

    Article  ADS  Google Scholar 

  83. U. Aglietti, V. Del Duca, C. Duhr, G. Somogyi and Z. Trócsányi, Analytic integration of real-virtual counterterms in NNLO jet cross sections. I., JHEP 09 (2008) 107 [arXiv:0807.0514] [INSPIRE].

    Article  ADS  Google Scholar 

  84. P. Bolzoni, S.-O. Moch, G. Somogyi and Z. Trócsányi, Analytic integration of real-virtual counterterms in NNLO jet cross sections. II., JHEP 08 (2009) 079 [arXiv:0905.4390] [INSPIRE].

    Article  ADS  Google Scholar 

  85. P. Bolzoni, G. Somogyi and Z. Trócsányi, A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the iterated singly-unresolved subtraction terms, JHEP 01 (2011) 059 [arXiv:1011.1909] [INSPIRE].

    Article  ADS  Google Scholar 

  86. S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at hadron colliders: A Fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 103 (2009) 082001 [arXiv:0903.2120] [INSPIRE].

    Article  ADS  Google Scholar 

  87. S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Diphoton production at hadron colliders: a fully-differential QCD calculation at NNLO, Phys. Rev. Lett. 108 (2012) 072001 [arXiv:1110.2375] [INSPIRE].

    Article  ADS  Google Scholar 

  88. S. Weinzierl, Moments of event shapes in electron-positron annihilation at NNLO, Phys. Rev. D 80 (2009) 094018 [arXiv:0909.5056] [INSPIRE].

    ADS  Google Scholar 

  89. M. Czakon, Double-real radiation in hadronic top quark pair production as a proof of a certain concept, Nucl. Phys. B 849 (2011) 250 [arXiv:1101.0642] [INSPIRE].

    Article  ADS  Google Scholar 

  90. R. Boughezal, K. Melnikov and F. Petriello, A subtraction scheme for NNLO computations, Phys. Rev. D 85 (2012) 034025 [arXiv:1111.7041] [INSPIRE].

    ADS  Google Scholar 

  91. A. Gehrmann-De Ridder, E. Glover and J. Pires, Real-Virtual corrections for gluon scattering at NNLO, JHEP 02 (2012) 141 [arXiv:1112.3613] [INSPIRE].

    Article  ADS  Google Scholar 

  92. J.C. Collins, D.E. Soper and G.F. Sterman, Transverse Momentum Distribution in Drell-Yan Pair and W and Z Boson Production, Nucl. Phys. B 250 (1985) 199 [INSPIRE].

    Article  ADS  Google Scholar 

  93. Z. Bern and D.A. Kosower, Color decomposition of one loop amplitudes in gauge theories, Nucl. Phys. B 362 (1991) 389 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  94. J.R. Forshaw, M.H. Seymour and A. Siodmok, private communication.

  95. J.R. Forshaw, M.H. Seymour and A. Siodmok, On the breaking of collinear factorization in QCD, arXiv:1206.6363 [INSPIRE].

  96. J.R. Forshaw, Coulomb gluon, talk presented at the Workshop on Event Generators and Resummation, DESY Hamburg, 29 May – 1 June 2012 [https://indico.desy.de/contributionDisplay.py?contribId=3&confId=5230].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel de Florian.

Additional information

ArXiv ePrint: 1112.4405

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catani, S., de Florian, D. & Rodrigo, G. Space-like (vs. time-like) collinear limits in QCD: is factorization violated?. J. High Energ. Phys. 2012, 26 (2012). https://doi.org/10.1007/JHEP07(2012)026

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2012)026

Keywords

Navigation