Skip to main content
Log in

Probing strongly coupled anisotropic plasma

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We calculate the static potential, the drag force and the jet quenching parameter in strongly coupled anisotropic \( \mathcal{N} = {4} \) super Yang-Mills plasma. We find that the jet quenching is in general enhanced in presence of anisotropy compared to the isotropic case and that its value depends strongly on the direction of the moving quark and the direction along which the momentum broadening occurs. The jet quenching is strongly enhanced for a quark moving along the anisotropic direction and momentum broadening happens along the transverse one. The parameter gets lower for a quark moving along the transverse direction and the momentum broadening considered along the anisotropic one. Finally, a weaker enhancement is observed when the quark moves in the transverse plane and the broadening occurs on the same plane. The drag force for quark motion parallel to the anisotropy is always enhanced. For motion in the transverse space the drag force is enhanced compared to the isotropic case only for quarks having velocity above a critical value. Below this critical value the force is decreased. Moreover, the drag force along the anisotropic direction is always stronger than the force in the transverse space. The diffusion time follows exactly the inverse relations of the drag forces. The static potential is decreased and stronger decrease observed for quark-antiquark pair aligned along the anisotropic direction than the transverse one. We finally comment on our results and elaborate on their similarities and differences with the weakly coupled plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. STAR collaboration, J. Adams et al., Experimental and theoretical challenges in the search for the quark gluon plasma: the STAR collaborations critical assessment of the evidence from RHIC collisions, Nucl. Phys. A 757 (2005) 102 [nucl-ex/0501009] [INSPIRE].

    ADS  Google Scholar 

  2. PHENIX collaboration, K. Adcox et al., Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: experimental evaluation by the PHENIX collaboration, Nucl. Phys. A 757 (2005) 184 [nucl-ex/0410003] [INSPIRE].

    ADS  Google Scholar 

  3. E. Shuryak, Why does the quark gluon plasma at RHIC behave as a nearly ideal fluid?, Prog. Part. Nucl. Phys. 53 (2004) 273 [hep-ph/0312227] [INSPIRE].

    Article  ADS  Google Scholar 

  4. E.V. Shuryak, What RHIC experiments and theory tell us about properties of quark-gluon plasma?, Nucl. Phys. A 750 (2005) 64 [hep-ph/0405066] [INSPIRE].

    ADS  Google Scholar 

  5. H.B. Meyer, A calculation of the shear viscosity in SU(3) gluodynamics, Phys. Rev. D 76 (2007) 101701 [arXiv:0704.1801] [INSPIRE].

    ADS  Google Scholar 

  6. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  7. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  8. J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions, arXiv:1101.0618 [INSPIRE].

  9. M. Luzum and P. Romatschke, Conformal relativistic viscous hydrodynamics: applications to RHIC results at \( \sqrt {{{S_{{NN}}}}} = {2}00 \) GeV, Phys. Rev. C 78 (2008) 034915 [Erratum ibid. C 79 (2009) 039903] [arXiv:0804.4015] [INSPIRE].

    Google Scholar 

  10. P. Romatschke, New developments in relativistic viscous hydrodynamics, Int. J. Mod. Phys. E 19 (2010) 1 [arXiv:0902.3663] [INSPIRE].

    ADS  Google Scholar 

  11. G. Policastro, D. Son and A. Starinets, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [INSPIRE].

    Article  ADS  Google Scholar 

  12. P. Kovtun, D. Son and A. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].

    Article  ADS  Google Scholar 

  13. P.M. Chesler and L.G. Yaffe, Holography and colliding gravitational shock waves in asymptotically AdS 5 spacetime, Phys. Rev. Lett. 106 (2011) 021601 [arXiv:1011.3562] [INSPIRE].

    Article  ADS  Google Scholar 

  14. R.A. Janik and P. Witaszczyk, Towards the description of anisotropic plasma at strong coupling, JHEP 09 (2008) 026 [arXiv:0806.2141] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. A. Rebhan and D. Steineder, Electromagnetic signatures of a strongly coupled anisotropic plasma, JHEP 08 (2011) 153 [arXiv:1106.3539] [INSPIRE].

    Article  ADS  Google Scholar 

  16. J. Erdmenger, P. Kerner and H. Zeller, Non-universal shear viscosity from Einstein gravity, Phys. Lett. B 699 (2011) 301 [arXiv:1011.5912] [INSPIRE].

    ADS  Google Scholar 

  17. J. Erdmenger, P. Kerner and H. Zeller, Transport in anisotropic superfluids: a holographic description, JHEP 01 (2012) 059 [arXiv:1110.0007] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. T. Azeyanagi, W. Li and T. Takayanagi, On string theory duals of Lifshitz-like fixed points, JHEP 06 (2009) 084 [arXiv:0905.0688] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. D. Mateos and D. Trancanelli, Thermodynamics and instabilities of a strongly coupled anisotropic plasma, JHEP 07 (2011) 054 [arXiv:1106.1637] [INSPIRE].

    Article  ADS  Google Scholar 

  20. D. Mateos and D. Trancanelli, The anisotropic N = 4 super Yang-Mills plasma and its instabilities, Phys. Rev. Lett. 107 (2011) 101601 [arXiv:1105.3472] [INSPIRE].

    Article  ADS  Google Scholar 

  21. A. Rebhan and D. Steineder, Violation of the holographic viscosity bound in a strongly coupled anisotropic plasma, Phys. Rev. Lett. 108 (2012) 021601 [arXiv:1110.6825] [INSPIRE].

    Article  ADS  Google Scholar 

  22. M.P. Heller, D. Mateos, W. van der Schee and D. Trancanelli, Strong coupling isotropization of non-abelian plasmas simplified, Phys. Rev. Lett. 108 (2012) 191601 [arXiv:1202.0981] [INSPIRE].

    Article  ADS  Google Scholar 

  23. STAR collaboration, J. Adams et al., Pion, kaon, proton and anti-proton transverse momentum distributions from p + p and d+ Au collisions at \( \sqrt {{{s_{{NN}}}}} = {2}00 \) GeV, Phys. Lett. B 616 (2005) 8 [nucl-ex/0309012] [INSPIRE].

    ADS  Google Scholar 

  24. S. Mrowczynski, Plasma instability at the initial stage of ultrarelativistic heavy ion collisions, Phys. Lett. B 314 (1993) 118 [INSPIRE].

    ADS  Google Scholar 

  25. S. Mrowczynski, Instabilities driven equilibration of the quark-gluon plasma, Acta Phys. Polon. B 37 (2006) 427 [hep-ph/0511052] [INSPIRE].

    ADS  Google Scholar 

  26. P.B. Arnold, J. Lenaghan, G.D. Moore and L.G. Yaffe, Apparent thermalization due to plasma instabilities in quark-gluon plasma, Phys. Rev. Lett. 94 (2005) 072302 [nucl-th/0409068] [INSPIRE].

    Article  ADS  Google Scholar 

  27. A. Rebhan, P. Romatschke and M. Strickland, Hard-loop dynamics of non-abelian plasma instabilities, Phys. Rev. Lett. 94 (2005) 102303 [hep-ph/0412016] [INSPIRE].

    Article  ADS  Google Scholar 

  28. P. Romatschke and R. Venugopalan, Collective non-abelian instabilities in a melting color glass condensate, Phys. Rev. Lett. 96 (2006) 062302 [hep-ph/0510121] [INSPIRE].

    Article  ADS  Google Scholar 

  29. P. Romatschke and M. Strickland, Collective modes of an anisotropic quark gluon plasma, Phys. Rev. D 68 (2003) 036004 [hep-ph/0304092] [INSPIRE].

    ADS  Google Scholar 

  30. P. Romatschke and M. Strickland, Collective modes of an anisotropic quark-gluon plasma II, Phys. Rev. D 70 (2004) 116006 [hep-ph/0406188] [INSPIRE].

    ADS  Google Scholar 

  31. M. Martinez and M. Strickland, Constraining relativistic viscous hydrodynamical evolution, Phys. Rev. C 79 (2009) 044903 [arXiv:0902.3834] [INSPIRE].

    ADS  Google Scholar 

  32. M. Asakawa, S.A. Bass and B. Müller, Anomalous transport processes in anisotropically expanding quark-gluon plasmas, Prog. Theor. Phys. 116 (2007) 725 [hep-ph/0608270] [INSPIRE].

    Article  ADS  Google Scholar 

  33. W. Horowitz and M. Gyulassy, Heavy quark jet tomography of Pb + Pb at LHC: AdS/CFT drag or pQCD energy loss?, Phys. Lett. B 666 (2008) 320 [arXiv:0706.2336] [INSPIRE].

    ADS  Google Scholar 

  34. S.C. Huot, S. Jeon and G.D. Moore, Shear viscosity in weakly coupled N = 4 super Yang-Mills theory compared to QCD, Phys. Rev. Lett. 98 (2007) 172303 [hep-ph/0608062] [INSPIRE].

    Article  ADS  Google Scholar 

  35. A. Brandhuber, N. Itzhaki, J. Sonnenschein and S. Yankielowicz, Wilson loops in the large-N limit at finite temperature, Phys. Lett. B 434 (1998) 36 [hep-th/9803137] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  36. D. Giataganas and N. Irges, Flavor corrections in the static potential in holographic QCD, Phys. Rev. D 85 (2012) 046001 [arXiv:1104.1623] [INSPIRE].

    ADS  Google Scholar 

  37. H. Satz, Colour deconfinement and quarkonium binding, J. Phys. G 32 (2006) R25 [hep-ph/0512217] [INSPIRE].

    ADS  Google Scholar 

  38. F. Karsch, D. Kharzeev and H. Satz, Sequential charmonium dissociation, Phys. Lett. B 637 (2006) 75 [hep-ph/0512239] [INSPIRE].

    ADS  Google Scholar 

  39. A. Dumitru, Y. Guo and M. Strickland, The heavy-quark potential in an anisotropic (viscous) plasma, Phys. Lett. B 662 (2008) 37 [arXiv:0711.4722] [INSPIRE].

    ADS  Google Scholar 

  40. C. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L. Yaffe, Energy loss of a heavy quark moving through N = 4 supersymmetric Yang-Mills plasma, JHEP 07 (2006) 013 [hep-th/0605158] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. S.S. Gubser, Drag force in AdS/CFT, Phys. Rev. D 74 (2006) 126005 [hep-th/0605182] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  42. A. Guijosa and J.F. Pedraza, Early-time energy loss in a strongly-coupled SYM plasma, JHEP 05 (2011) 108 [arXiv:1102.4893] [INSPIRE].

    Article  ADS  Google Scholar 

  43. H. Liu, K. Rajagopal and U.A. Wiedemann, Calculating the jet quenching parameter from AdS/CFT, Phys. Rev. Lett. 97 (2006) 182301 [hep-ph/0605178] [INSPIRE].

    Article  ADS  Google Scholar 

  44. P. Romatschke, Momentum broadening in an anisotropic plasma, Phys. Rev. C 75 (2007) 014901 [hep-ph/0607327] [INSPIRE].

    ADS  Google Scholar 

  45. A. Dumitru, Y. Nara, B. Schenke and M. Strickland, Jet broadening in unstable non-abelian plasmas, Phys. Rev. C 78 (2008) 024909 [arXiv:0710.1223] [INSPIRE].

    ADS  Google Scholar 

  46. R. Baier and Y. Mehtar-Tani, Jet quenching and broadening: the transport coefficient q-hat in an anisotropic plasma, Phys. Rev. C 78 (2008) 064906 [arXiv:0806.0954] [INSPIRE].

    ADS  Google Scholar 

  47. P. Jacobs, Jets in nuclear collisions: status and perspective, Eur. Phys. J. C 43 (2005) 467 [nucl-ex/0503022] [INSPIRE].

    Article  ADS  Google Scholar 

  48. S.S. Gubser, S.S. Pufu, F.D. Rocha and A. Yarom, Energy loss in a strongly coupled thermal medium and the gauge-string duality, arXiv:0902.4041 [INSPIRE].

  49. R.C. Hwa, X-N. Wang, Quark-gluon plasma 4, World Scientific, Singapore (2010).

    Book  Google Scholar 

  50. M. Martinez and M. Strickland, Dissipative dynamics of highly anisotropic systems, Nucl. Phys. A 848 (2010) 183 [arXiv:1007.0889] [INSPIRE].

    ADS  Google Scholar 

  51. M. Margotta, K. McCarty, C. McGahan, M. Strickland and D. Yager-Elorriaga, Quarkonium states in a complex-valued potential, Phys. Rev. D 83 (2011) 105019 [Erratum ibid. D 84 (2011) 069902] [arXiv:1101.4651] [INSPIRE].

    Google Scholar 

  52. A. Nakamura and S. Sakai, Transport coefficients of gluon plasma, Phys. Rev. Lett. 94 (2005) 072305 [hep-lat/0406009] [INSPIRE].

    Article  ADS  Google Scholar 

  53. P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 102 (2009) 211601 [arXiv:0812.2053] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. E. Caceres and A. Guijosa, On drag forces and jet quenching in strongly coupled plasmas, JHEP 12 (2006) 068 [hep-th/0606134] [INSPIRE].

    Article  ADS  Google Scholar 

  55. F.-L. Lin and T. Matsuo, Jet quenching parameter in medium with chemical potential from AdS/CFT, Phys. Lett. B 641 (2006) 45 [hep-th/0606136] [INSPIRE].

    ADS  Google Scholar 

  56. N. Armesto, J.D. Edelstein and J. Mas, Jet quenching at finitet Hooft coupling and chemical potential from AdS/CFT, JHEP 09 (2006) 039 [hep-ph/0606245] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. S.D. Avramis and K. Sfetsos, Supergravity and the jet quenching parameter in the presence of r-charge densities, JHEP 01 (2007) 065 [hep-th/0606190] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  58. A. Dumitru, Y. Guo, A. Mócsy and M. Strickland, Quarkonium states in an anisotropic QCD plasma, Phys. Rev. D 79 (2009) 054019 [arXiv:0901.1998] [INSPIRE].

    ADS  Google Scholar 

  59. B. Schenke and M. Strickland, Photon production from an anisotropic quark-gluon plasma, Phys. Rev. D 76 (2007) 025023 [hep-ph/0611332] [INSPIRE];

    ADS  Google Scholar 

  60. M. Martinez and M. Strickland, Measuring QGP thermalization time with dileptons, Phys. Rev. Lett. 100 (2008) 102301 [arXiv:0709.3576] [INSPIRE].

    Article  ADS  Google Scholar 

  61. M. Martinez and M. Strickland, Pre-equilibrium dilepton production from an anisotropic quark-gluon plasma, Phys. Rev. C 78 (2008) 034917 [arXiv:0805.4552] [INSPIRE].

    ADS  Google Scholar 

  62. M. Martinez and M. Strickland, Suppression of forward dilepton production from an anisotropic quark-gluon plasma, Eur. Phys. J. C 61 (2009) 905 [arXiv:0808.3969] [INSPIRE].

    Article  ADS  Google Scholar 

  63. C.-S. Chu and D. Giataganas, UV-divergences of Wilson loops for gauge/gravity duality, JHEP 12 (2008) 103 [arXiv:0810.5729] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  64. Y. Kinar, E. Schreiber and J. Sonnenschein, Q \( \overline q \) potential from strings in curved space-time: classical results, Nucl. Phys. B 566 (2000) 103 [hep-th/9811192] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  65. U. Gürsoy, E. Kiritsis, G. Michalogiorgakis and F. Nitti, Thermal transport and drag force in improved holographic QCD, JHEP 12 (2009) 056 [arXiv:0906.1890] [INSPIRE].

    Article  Google Scholar 

  66. M. Chernicoff, D. Fernandez, D. Mateos and D. Trancanelli, Drag force in a strongly coupled anisotropic plasma, arXiv:1202.3696 [INSPIRE].

  67. M. Chernicoff, D. Fernandez, D. Mateos and D. Trancanelli, Jet quenching in a strongly coupled anisotropic plasma, arXiv:1203.0561 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Giataganas.

Additional information

ArXiv ePrint: 1202.4436

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giataganas, D. Probing strongly coupled anisotropic plasma. J. High Energ. Phys. 2012, 31 (2012). https://doi.org/10.1007/JHEP07(2012)031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2012)031

Keywords

Navigation