Skip to main content
Log in

Status of the two-Higgs-doublet model of type II

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We determine the allowed parameter space of the CP-conserving two-Higgs-doublet model (2HDM) of type II with a softly broken Z 2 symmetry. Our analysis includes theoretical constraints from vacuum stability and perturbativity as well as experimental constraints from signal strengths of the 126 GeV Higgs boson, the non-observation of additional Higgs resonances and electroweak precision and flavour observables. If the 126 GeV resonance is interpreted as the light CP-even Higgs boson of the 2HDM our analysis shows that scenarios where the couplings of this boson deviate substantially from those of the SM Higgs boson are disfavoured at one standard deviation and completely excluded for small values of tan β. We also discuss bounds on the masses of the heavy 2HDM Higgs bosons and their implications for the possible decay modes of these particles. We find that the region in which both non-standard neutral Higgs bosons are simultaneously lighter than 300 GeV is excluded at two standard deviations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  2. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  3. A. Djouadi and A. Lenz, Sealing the fate of a fourth generation of fermions, Phys. Lett. B 715 (2012) 310 [arXiv:1204.1252] [INSPIRE].

    ADS  Google Scholar 

  4. E. Kuflik, Y. Nir and T. Volansky, Implications of Higgs searches on the four generation standard model, arXiv:1204.1975 [INSPIRE].

  5. O. Eberhardt et al., Joint analysis of Higgs decays and electroweak precision observables in the standard model with a sequential fourth generation, Phys. Rev. D 86 (2012) 013011 [arXiv:1204.3872] [INSPIRE].

    ADS  Google Scholar 

  6. M. Buchkremer, J.-M. Gerard and F. Maltoni, Closing in on a perturbative fourth generation, JHEP 06 (2012) 135 [arXiv:1204.5403] [INSPIRE].

    Article  ADS  Google Scholar 

  7. O. Eberhardt, A. Lenz, A. Menzel, U. Nierste and M. Wiebusch, Status of the fourth fermion generation before ICHEP2012: Higgs data and electroweak precision observables, Phys. Rev. D 86 (2012) 074014 [arXiv:1207.0438] [INSPIRE].

    ADS  Google Scholar 

  8. O. Eberhardt et al., Impact of a Higgs boson at a mass of 126 GeV on the standard model with three and four fermion generations, Phys. Rev. Lett. 109 (2012) 241802 [arXiv:1209.1101] [INSPIRE].

    Article  ADS  Google Scholar 

  9. T. Lee, A theory of spontaneous T violation, Phys. Rev. D 8 (1973) 1226 [INSPIRE].

    ADS  Google Scholar 

  10. S.L. Glashow and S. Weinberg, Natural conservation laws for neutral currents, Phys. Rev. D 15 (1977) 1958 [INSPIRE].

    ADS  Google Scholar 

  11. J.F. Donoghue and L.F. Li, Properties of charged Higgs bosons, Phys. Rev. D 19 (1979) 945 [INSPIRE].

    ADS  Google Scholar 

  12. O. Deschamps et al., The two Higgs doublet of type II facing flavour physics data, Phys. Rev. D 82 (2010) 073012 [arXiv:0907.5135] [INSPIRE].

    ADS  Google Scholar 

  13. P. Ferreira, R. Santos, M. Sher and J.P. Silva, Implications of the LHC two-photon signal for two-Higgs-doublet models, Phys. Rev. D 85 (2012) 077703 [arXiv:1112.3277] [INSPIRE].

    ADS  Google Scholar 

  14. K. Blum and R.T. D’Agnolo, 2 Higgs or not 2 Higgs, Phys. Lett. B 714 (2012) 66 [arXiv:1202.2364] [INSPIRE].

    ADS  Google Scholar 

  15. L. Basso et al., Probing the charged Higgs boson at the LHC in the CP-violating type-II 2HDM, JHEP 11 (2012) 011 [arXiv:1205.6569] [INSPIRE].

    Article  ADS  Google Scholar 

  16. H. Cheon and S.K. Kang, Constraining parameter space in type-II two-Higgs doublet model in light of a 125 GeV Higgs boson, arXiv:1207.1083 [INSPIRE].

  17. D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs after the discovery: a status report, JHEP 10 (2012) 196 [arXiv:1207.1718] [INSPIRE].

    Article  ADS  Google Scholar 

  18. P. Ferreira, R. Santos, H.E. Haber and J.P. Silva, Mass-degenerate Higgs bosons at 125 gev in the two-Higgs-doublet model, Phys. Rev. D 87 (2013) 055009 [arXiv:1211.3131] [INSPIRE].

    ADS  Google Scholar 

  19. A. Drozd, B. Grzadkowski, J.F. Gunion and Y. Jiang, Two-Higgs-doublet models and enhanced rates for a 125 GeV Higgs, JHEP 05 (2013) 072 [arXiv:1211.3580] [INSPIRE].

    Article  ADS  Google Scholar 

  20. J. Chang, K. Cheung, P.-Y. Tseng and T.-C. Yuan, Implications on the heavy CP-even Higgs boson from current Higgs data, Phys. Rev. D 87 (2013) 035008 [arXiv:1211.3849] [INSPIRE].

    ADS  Google Scholar 

  21. C.-Y. Chen and S. Dawson, Exploring two Higgs doublet models through Higgs production, arXiv:1301.0309 [INSPIRE].

  22. A. Celis, V. Ilisie and A. Pich, LHC constraints on two-Higgs doublet models, JHEP 07 (2013) 053 [arXiv:1302.4022] [INSPIRE].

    Article  Google Scholar 

  23. P.P. Giardino, K. Kannike, I. Masina, M. Raidal and A. Strumia, The universal Higgs fit, arXiv:1303.3570 [INSPIRE].

  24. B. Grinstein and P. Uttayarat, Carving out parameter space in type-II two Higgs doublets model, JHEP 06 (2013) 094 [arXiv:1304.0028] [INSPIRE].

    Article  ADS  Google Scholar 

  25. J. Shu and Y. Zhang, Impact of a CP-violating Higgs: from LHC to baryogenesis, arXiv:1304.0773 [INSPIRE].

  26. A. Barroso, P. Ferreira, R. Santos, M. Sher and J.P. Silva, 2HDM at the LHCThe story so far, arXiv:1304.5225 [INSPIRE].

  27. B. Coleppa, F. Kling and S. Su, Constraining type II 2HDM in light of LHC Higgs searches, arXiv:1305.0002 [INSPIRE].

  28. J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: the approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].

    ADS  Google Scholar 

  29. A. Barroso, P. Ferreira, I. Ivanov and R. Santos, Metastability bounds on the two Higgs doublet model, JHEP 06 (2013) 045 [arXiv:1303.5098] [INSPIRE].

    Article  ADS  Google Scholar 

  30. U. Nierste and K. Riesselmann, Higgs sector renormalization group in the MS and OMS scheme: the breakdown of perturbation theory for a heavy Higgs, Phys. Rev. D 53 (1996) 6638 [hep-ph/9511407] [INSPIRE].

    ADS  Google Scholar 

  31. ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the two photon decay channel with the ATLAS detector using 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-012 (2013).

  32. ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-013 (2013).

  33. CMS collaboration, Updated measurements of the Higgs boson at 125 GeV in the two photon decay channel, CMS-PAS-HIG-13-001 (2013).

  34. CMS collaboration, Properties of the Higgs-like boson in the decay HZZ → 4l in pp collisions at \( \sqrt{s} \) = 7 and 8 TeV, CMS-PAS-HIG-13-002 (2012).

  35. P. Ferreira, R. Santos, M. Sher and J.P. Silva, Could the LHC two-photon signal correspond to the heavier scalar in two-Higgs-doublet models?, Phys. Rev. D 85 (2012) 035020 [arXiv:1201.0019] [INSPIRE].

    ADS  Google Scholar 

  36. G. Burdman, C.E. Haluch and R.D. Matheus, Is the LHC observing the pseudo-scalar state of a two-Higgs doublet model?, Phys. Rev. D 85 (2012) 095016 [arXiv:1112.3961] [INSPIRE].

    ADS  Google Scholar 

  37. T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].

    Article  ADS  Google Scholar 

  38. T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  39. T. Hahn and M. Rauch, News from FormCalc and LoopTools, Nucl. Phys. Proc. Suppl. 157 (2006) 236 [hep-ph/0601248] [INSPIRE].

    Article  ADS  Google Scholar 

  40. CMS collabroation, Evidence for a particle decaying to W + W in the fully leptonic final state in a standard model Higgs boson search in pp collisions at the LHC, CMS-PAS-HIG-13-003 (2013).

  41. W. Hollik, Nonstandard Higgs bosons in SU(2) × U(1) radiative corrections, Z. Phys. C 32 (1986) 291 [INSPIRE].

    ADS  Google Scholar 

  42. W. Hollik, Radiative corrections with two Higgs doublets at LEP/SLC and HERA, Z. Phys. C 37 (1988) 569 [INSPIRE].

    ADS  Google Scholar 

  43. H.E. Haber and H.E. Logan, Radiative corrections to the \( Zb\overline{b} \) vertex and constraints on extended Higgs sectors, Phys. Rev. D 62 (2000) 015011 [hep-ph/9909335] [INSPIRE].

    ADS  Google Scholar 

  44. P. Gonzalez, J. Rohrwild and M. Wiebusch, Electroweak precision observables within a fourth generation model with general flavour structure, Eur. Phys. J. C 72 (2012) 2007 [arXiv:1105.3434] [INSPIRE].

    ADS  Google Scholar 

  45. D.Y. Bardin, M.S. Bilenky, T. Riemann, M. Sachwitz and H. Vogt, Dizet: a program package for the calculation of electroweak one loop corrections for the process e + e f + f around the Z 0 peak, Comput. Phys. Commun. 59 (1990) 303 [INSPIRE].

    Article  ADS  Google Scholar 

  46. D.Y. Bardin et al., ZFITTER v.6.21: a semianalytical program for fermion pair production in e + e annihilation, Comput. Phys. Commun. 133 (2001) 229 [hep-ph/9908433] [INSPIRE].

  47. A. Arbuzov et al., ZFITTER: a semi-analytical program for fermion pair production in e + e annihilation, from version 6.21 to version 6.42, Comput. Phys. Commun. 174 (2006) 728 [hep-ph/0507146] [INSPIRE].

  48. A. Freitas and Y.-C. Huang, Electroweak two-loop corrections to sin2 (θ eff,bb ) and R b using numerical Mellin-Barnes integrals, JHEP 08 (2012) 050 [Erratum ibid. 1305 (2013) 074] [arXiv:1205.0299] [INSPIRE].

  49. M. Ciuchini, G. Degrassi, P. Gambino and G. Giudice, Next-to-leading QCD corrections to BX s γ: standard model and two Higgs doublet model, Nucl. Phys. B 527 (1998) 21 [hep-ph/9710335] [INSPIRE].

  50. F. Borzumati and C. Greub, 2HDMs predictions for \( \overline{B} \)X s γ in NLO QCD, Phys. Rev. D 58 (1998) 074004 [hep-ph/9802391] [INSPIRE].

    ADS  Google Scholar 

  51. F. Borzumati and C. Greub, Two Higgs doublet model predictions for \( \overline{B} \)X s γ in NLO QCD: addendum, Phys. Rev. D 59 (1999) 057501 [hep-ph/9809438] [INSPIRE].

    ADS  Google Scholar 

  52. P. Ciafaloni, A. Romanino and A. Strumia, Two loop QCD corrections to charged Higgs mediated bsγ decay, Nucl. Phys. B 524 (1998) 361 [hep-ph/9710312] [INSPIRE].

    Article  ADS  Google Scholar 

  53. C. Bobeth, M. Misiak and J. Urban, Matching conditions for bsγ and bs gluon in extensions of the standard model, Nucl. Phys. B 567 (2000) 153 [hep-ph/9904413] [INSPIRE].

    Article  Google Scholar 

  54. T. Hermann, M. Misiak and M. Steinhauser, \( \overline{B} \)X s γ in the two Higgs doublet model up to next-to-next-to-leading order in QCD, JHEP 11 (2012) 036 [arXiv:1208.2788] [INSPIRE].

    Article  ADS  Google Scholar 

  55. M. Misiak and M. Steinhauser, NNLO QCD corrections to the \( \overline{B} \)X s γ matrix elements using interpolation in m c , Nucl. Phys. B 764 (2007) 62 [hep-ph/0609241] [INSPIRE].

    Article  ADS  Google Scholar 

  56. Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of B-Hadron, C-Hadron and τ-lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].

  57. P. Gambino and P. Giordano, Normalizing inclusive rare B decays, Phys. Lett. B 669 (2008) 69 [arXiv:0805.0271] [INSPIRE].

    ADS  Google Scholar 

  58. L. Abbott, P. Sikivie and M.B. Wise, Constraints on charged Higgs couplings, Phys. Rev. D 21 (1980) 1393 [INSPIRE].

    ADS  Google Scholar 

  59. C. Geng and J.N. Ng, Charged Higgs effect in \( B_d^0-\overline{B}_d^0 \) mixing, Kπ neutrino anti-neutrino decay and rare decays of B mesons, Phys. Rev. D 38 (1988) 2857 [Erratum ibid. D 41 (1990) 1715] [INSPIRE].

  60. A.J. Buras, P. Krawczyk, M.E. Lautenbacher and C. Salazar, \( {B^0}-{{\overline{B}}^0} \) mixing, CP-violation, K +π + neutrino anti-neutrino and BKγX in a two Higgs doublet model, Nucl. Phys. B 337 (1990) 284 [INSPIRE].

    Article  ADS  Google Scholar 

  61. CKMfitter group, private communication.

  62. A.J. Buras, M. Jamin and P.H. Weisz, Leading and next-to-leading QCD corrections to ∈ parameter and \( {B^0}-{{\overline{B}}^0} \) mixing in the presence of a heavy top quark, Nucl. Phys. B 347 (1990) 491 [INSPIRE].

    Article  ADS  Google Scholar 

  63. Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].

  64. A. Lenz et al., Constraints on new physics in \( B\ {-}\overline{B} \) mixing in the light of recent LHCb data, Phys. Rev. D 86 (2012) 033008 [arXiv:1203.0238] [INSPIRE].

    ADS  Google Scholar 

  65. HPQCD collaboration, E. Gamiz, C.T. Davies, G.P. Lepage, J. Shigemitsu and M. Wingate, Neutral B meson mixing in unquenched lattice QCD, Phys. Rev. D 80 (2009) 014503 [arXiv:0902.1815] [INSPIRE].

  66. LHCb collaboration, Precision measurement of the \( B_s^0-\overline{B}_s^0 \) oscillation frequency with the decay \( B_s^0\ \to\ D_s^{-}{\pi^{+}} \), New J. Phys. 15 (2013) 053021 [arXiv:1304.4741] [INSPIRE].

  67. W.-S. Hou, Enhanced charged Higgs boson effects in B τ anti-neutrino, μ anti-neutrino and bτ anti-neutrino + X, Phys. Rev. D 48 (1993) 2342 [INSPIRE].

    ADS  Google Scholar 

  68. A. Akeroyd and S. Recksiegel, The effect of H ± on B ±τ ± ν τ and ±μ ± muon neutrino, J. Phys. G 29 (2003) 2311 [hep-ph/0306037] [INSPIRE].

  69. B. Grzadkowski and W.-S. Hou, Searching for \( B\ \to\ D\tau \overline{\tau} \) -neutrino at the 10-percent level, Phys. Lett. B 283 (1992) 427 [INSPIRE].

    ADS  Google Scholar 

  70. T. Miki, T. Miura and M. Tanaka, Effects of charged Higgs boson and QCD corrections in \( \overline{B}\ \to\ D\tau {{\overline{nu}}_{\tau }} \), hep-ph/0210051 [INSPIRE].

  71. U. Nierste, S. Trine and S. Westhoff, Charged-Higgs effects in a new BDτν differential decay distribution, Phys. Rev. D 78 (2008) 015006 [arXiv:0801.4938] [INSPIRE].

    ADS  Google Scholar 

  72. J.F. Kamenik and F. Mescia, BDτν branching ratios: opportunity for lattice QCD and hadron colliders, Phys. Rev. D 78 (2008) 014003 [arXiv:0802.3790] [INSPIRE].

    ADS  Google Scholar 

  73. S. Trine, Charged-Higgs effects in B → (D)τν decays, arXiv:0810.3633 [INSPIRE].

  74. M. Tanaka and R. Watanabe, τ longitudinal polarization in BDτν and its role in the search for charged Higgs boson, Phys. Rev. D 82 (2010) 034027 [arXiv:1005.4306] [INSPIRE].

  75. S. Fajfer, J.F. Kamenik and I. Nisandzic, On the \( B\ \to\ {D^{*}}\tau {{\overline{\nu}}_{\tau }} \) sensitivity to new physics, Phys.Rev. D85 (2012) 094025 [arXiv:1203.2654] [INSPIRE].

    ADS  Google Scholar 

  76. Y. Sakaki and H. Tanaka, Constraints of the charged scalar effects using the forward-backward asymmetry on \( B\ \to\ {D^{{\left( * \right)}}}\tau \overline{{{\nu_{\tau }}}} \), Phys. Rev. D 87 (2013) 054002 [arXiv:1205.4908] [INSPIRE].

    ADS  Google Scholar 

  77. D. Becirevic, N. Kosnik and A. Tayduganov, \( \overline{B}\ \to\ D\tau {{\overline{\nu}}_{\tau }} \) vs. \( \overline{B}\ \to\ D\mu {{\overline{\nu}}_{\mu }} \), Phys. Lett. B 716 (2012) 208 [arXiv:1206.4977] [INSPIRE].

    ADS  Google Scholar 

  78. A. Celis, M. Jung, X.-Q. Li and A. Pich, Sensitivity to charged scalars in BD (*) τν τ and Bτν τ decays, JHEP 01 (2013) 054 [arXiv:1210.8443] [INSPIRE].

    Article  ADS  Google Scholar 

  79. M. Tanaka and R. Watanabe, New physics in the weak interaction of \( \overline{B}\ \to\ {D^{{\left( * \right)}}}\tau \overline{\nu} \), Phys. Rev. D 87 (2013) 034028 [arXiv:1212.1878] [INSPIRE].

    ADS  Google Scholar 

  80. H.E. Logan and U. Nierste, B s,d + in a two Higgs doublet model, Nucl. Phys. B 586 (2000) 39 [hep-ph/0004139] [INSPIRE].

    Article  ADS  Google Scholar 

  81. A. Crivellin, C. Greub and A. Kokulu, Explaining BDτν, BD * τν and Bτν in a 2HDM of type-III, Phys. Rev. D 86 (2012) 054014 [arXiv:1206.2634] [INSPIRE].

    ADS  Google Scholar 

  82. M. Wiebusch, Numerical computation of p-values with myFitter, arXiv:1207.1446 [INSPIRE].

  83. A. Hocker, H. Lacker, S. Laplace and F. Le Diberder, A new approach to a global fit of the CKM matrix, Eur. Phys. J. C 21 (2001) 225 [hep-ph/0104062] [INSPIRE].

    Article  ADS  Google Scholar 

  84. J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A phenomenological profile of the Higgs boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].

    ADS  Google Scholar 

  85. M. Spira, A. Djouadi, D. Graudenz and P. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].

    Article  ADS  Google Scholar 

  86. CMS collaboration, Higgs to ττ (SM) (HCP), CMS-PAS-HIG-12-043 (2012).

  87. ATLAS collaboration, Observation of an excess of events in the search for the Standard Model Higgs boson in the gamma-gamma channel with the ATLAS detector, ATLAS-CONF-2012-091 (2012).

  88. CDF, D0 collaboration, T. Aaltonen et al., Higgs boson studies at the Tevatron, arXiv:1303.6346 [INSPIRE].

  89. ATLAS collaboration, Combined search for the standard model Higgs boson in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, Phys. Rev. D 86 (2012) 032003 [arXiv:1207.0319] [INSPIRE].

  90. ATLAS collaboration, Observation of an excess of events in the search for the standard model Higgs boson in the γ-γ channel with the ATLAS detector, ATLAS-CONF-2012-091 (2012).

  91. ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the WW (*)ℓνℓν decay channel with the ATLAS detector using 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-030 (2013).

  92. ATLAS collaboration, Search for the standard model Higgs boson in produced in association with a vector boson and decaying to bottom quarks with the ATLAS detector, ATLAS-CONF-2012-161 (2012).

  93. ATLAS collaboration, Search for the standard model Higgs boson in Hττ decays in proton-proton collisions with the ATLAS detector, ATLAS-CONF-2012-160 (2012).

  94. CMS collaboration, Observation of a new boson with a mass near 125 GeV, CMS-PAS-HIG-12-020 (2012).

  95. CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-12-045 (2013).

  96. CMS collaboration, Search for the standard-model Higgs boson decaying to τ pairs in proton-proton collisions at \( \sqrt{s} \) = 7 and 8 TeV, CMS-PAS-HIG-13-004 (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Wiebusch.

Additional information

ArXiv ePrint: 1305.1649

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eberhardt, O., Nierste, U. & Wiebusch, M. Status of the two-Higgs-doublet model of type II. J. High Energ. Phys. 2013, 118 (2013). https://doi.org/10.1007/JHEP07(2013)118

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)118

Keywords

Navigation