Skip to main content
Log in

The matrix model version of AGT conjecture and CIV-DV prepotential

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Recently exact formulas were provided for partition function of conformal (multi-Penner) β-ensemble in the Dijkgraaf-Vafa phase, which, if interpreted as Dotsenko-Fateev correlator of screenings and analytically continued in the number of screening insertions, represents generic Virasoro conformal blocks. Actually these formulas describe the lowest terms of the q a -expansion, where q a parameterize the shape of the Penner potential, and are exact in the filling numbers N a . At the same time, the older theory of CIV-DV prepotential, straightforwardly extended to arbitrary β and to non-polynomial potentials, provides an alternative expansion: in powers of N a and exact in q a . We check that the two expansions coincide in the overlapping region, i.e. for the lowest terms of expansions in both q a and N a . This coincidence is somewhat non-trivial, since the two methods use different integration contours: integrals in one case are of the B-function (Euler-Selberg) type, while in the other case they are Gaussian integrals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  2. N. Wyllard, A N−1 conformal Toda field theory correlation functions from conformal \( \mathcal{N} = 2 \) SU(N) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. N. Drukker, D.R. Morrison and T. Okuda, Loop operators and S-duality from curves on Riemann surfaces, JHEP 09 (2009) 031 [arXiv:0907.2593] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  4. A. Marshakov, A. Mironov and A. Morozov, On combinatorial expansions of conformal blocks, arXiv:0907.3946 [SPIRES].

  5. A. Marshakov, A. Mironov and A. Morozov, On non-conformal limit of the AGT relations, Phys. Lett. B 682 (2009) 125 [arXiv:0909.2052] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  6. A. Marshakov, A. Mironov and A. Morozov, Zamolodchikov asymptotic formula and instanton expansion in \( \mathcal{N} = 2 \) SUSY N f = 2N c QCD, JHEP 11 (2009) 048 [arXiv:0909.3338] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  7. A. Mironov, S. Mironov, A. Morozov and A. Morozov, CFT exercises for the needs of AGT, arXiv:0908.2064 [SPIRES].

  8. A. Mironov and A. Morozov, On AGT relation in the case of U(3), Nucl. Phys. B 825 (2010) 1 [arXiv:0908.2569] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  9. A. Mironov and A. Morozov, Proving AGT relations in the large-c limit, Phys. Lett. B 682 (2009) 118 [arXiv:0909.3531] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  10. D. Gaiotto, Asymptotically free \( \mathcal{N} = 2 \) theories and irregular conformal blocks, arXiv:0908.0307 [SPIRES].

  11. S.M. Iguri and C.A. Núñez, Coulomb integrals and conformal blocks in the AdS 3 -WZNW model, JHEP 11 (2009) 090 [arXiv:0908.3460] [SPIRES].

    ADS  Google Scholar 

  12. D.V. Nanopoulos and D. Xie, On crossing symmmetry and modular invariance in conformal field theory and S duality in gauge theory, Phys. Rev. D 80 (2009) 105015 [arXiv:0908.4409] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  13. D. Nanopoulos and D. Xie, Hitchin equation, singularity and \( \mathcal{N} = 2 \) superconformal field theories, JHEP 03 (2010) 043 [arXiv:0911.1990] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  14. L.F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa and H. Verlinde, Loop and surface operators in \( \mathcal{N} = 2 \) gauge theory and Liouville modular geometry, JHEP 01 (2010) 113 [arXiv:0909.0945] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  15. N. Drukker, J. Gomis, T. Okuda and J. Teschner, Gauge theory loop operators and Liouville theory, JHEP 02 (2010) 057 [arXiv:0909.1105] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  16. A. Gadde, E. Pomoni, L. Rastelli and S.S. Razamat, S-duality and 2D topological QFT, JHEP 03 (2010) 032 [arXiv:0910.2225] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  17. L.F. Alday, F. Benini and Y. Tachikawa, Liouville/Toda central charges from M5-branes, arXiv:0909.4776 [SPIRES].

  18. R. Poghossian, Recursion relations in CFT and \( \mathcal{N} = 2 \) SYM theory, JHEP 12 (2009) 038 [arXiv:0909.3412] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  19. H. Awata and Y. Yamada, Five-dimensional AGT conjecture and the deformed Virasoro algebra, JHEP 01 (2010) 125 [arXiv:0910.4431] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  20. S. Kanno, Y. Matsuo, S. Shiba and Y. Tachikawa, \( \mathcal{N} = 2 \) gauge theories and degenerate fields of Toda theory, Phys. Rev. D 81 (2010) 046004 [arXiv:0911.4787] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  21. G. Bonelli and A. Tanzini, Hitchin systems, \( \mathcal{N} = 2 \) gauge theories and W-gravity, Phys. Lett. B 691 (2010) 111 [arXiv:0909.4031] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  22. V.A. Fateev and A.V. Litvinov, On AGT conjecture, JHEP 02 (2010) 014 [arXiv:0912.0504] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  23. G. Giribet, On triality in \( \mathcal{N} = 2 \) SCFT with N f = 4, arXiv:0912.1930 [SPIRES].

  24. M. Taki, On AGT conjecture for pure super Yang-Mills and W-algebra, arXiv:0912.4789 [SPIRES].

  25. V. Alba and A. Morozov, Non-conformal limit of AGT relation from the 1-point torus conformal block, arXiv:0911.0363 [SPIRES].

  26. V. Alba and A. Morozov, Check of AGT relation for conformal blocks on sphere, arXiv:0912.2535 [SPIRES].

  27. L. Hadasz, Z. Jaskolski and P. Suchanek, Recursive representation of the torus 1-point conformal block, JHEP 01 (2010) 063 [arXiv:0911.2353] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  28. L. Hadasz, Z. Jaskolski and P. Suchanek, Proving the AGT relation for N f = 0,1,2 antifundamentals, JHEP 06 (2010) 046 [arXiv:1004.1841] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  29. M. Fujita, Y. Hatsuda and T.-S. Tai, Genus-one correction to asymptotically free Seiberg-Witten prepotential from Dijkgraaf-Vafa matrix model, JHEP 03 (2010) 046 [arXiv:0912.2988] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  30. M. Taki, On AGT conjecture for pure super Yang-Mills and W-algebra, arXiv:0912.4789 [SPIRES].

  31. P. Sulkowski, Matrix models for β-ensembles from Nekrasov partition functions, JHEP 04 (2010) 063 [arXiv:0912.5476] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  32. C. Kozcaz, S. Pasquetti and N. Wyllard, A & B model approaches to surface operators and Toda theories, arXiv:1004.2025 [SPIRES].

  33. N.A. Nekrasov and S.L. Shatashvili, Supersymmetric vacua and Bethe ansatz, Nucl. Phys. (Proc. Suppl.) 192-193 (2009) 91 [arXiv:0901.4744] [SPIRES].

    MathSciNet  Google Scholar 

  34. N.A. Nekrasov and S.L. Shatashvili, Quantum integrability and supersymmetric vacua, Prog. Theor. Phys. Suppl. 177 (2009) 105 [arXiv:0901.4748] [SPIRES].

    ADS  Google Scholar 

  35. N.A. Nekrasov and S.L. Shatashvili, Quantization of integrable systems and four dimensional gauge theories, arXiv:0908.4052 [SPIRES].

  36. A. Mironov and A. Morozov, Nekrasov functions and exact Bohr-Sommerfeld integrals, JHEP 04 (2010) 040 [arXiv:0910.5670] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  37. A. Mironov and A. Morozov, Nekrasov functions from exact BS periods: the case of SU(N), J. Phys. A 43 (2010) 195401 [arXiv:0911.2396] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  38. A. Popolitov, On relation between Nekrasov functions and BS periods in pure SU(N) case, arXiv:1001.1407 [SPIRES].

  39. W. He, Sine-Gordon quantum mechanics on the complex plane and \( \mathcal{N} = 2 \) gauge theory, Phys. Rev. D 81 (2010) 105017.

    ADS  Google Scholar 

  40. A. Mironov and A. Morozov, The power of Nekrasov functions, Phys. Lett. B 680 (2009) 188 [arXiv:0908.2190] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  41. R. Dijkgraaf and C. Vafa, Toda theories, matrix models, topological strings and \( \mathcal{N} = 2 \) gauge systems, arXiv:0909.2453 [SPIRES].

  42. H. Itoyama, K. Maruyoshi and T. Oota, The quiver matrix model and 2D-4D conformal connection, arXiv:0911.4244 [SPIRES].

  43. T. Eguchi and K. Maruyoshi, Penner type matrix model and Seiberg-Witten theory, JHEP 02 (2010) 022 [arXiv:0911.4797] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  44. R. Schiappa and N. Wyllard, An A r threesome: matrix models, 2D CFTs and 4D \( \mathcal{N} = 2 \) gauge theories, arXiv:0911.5337 [SPIRES].

  45. A. Mironov, A. Morozov and S. Shakirov, Matrix model conjecture for exact BS periods and Nekrasov functions, JHEP 02 (2010) 030 [arXiv:0911.5721] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  46. A. Mironov, A. Morozov and S. Shakirov, Conformal blocks as Dotsenko-Fateev integral discriminants, Int. J. Mod. Phys. A 25 (2010) 3173 [arXiv:1001.0563] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  47. H. Itoyama and T. Oota, Method of generating q-expansion coefficients for conformal block and \( \mathcal{N} = 2 \) Nekrasov function by β-deformed matrix model, Nucl. Phys. B 838 (2010) 298 [arXiv:1003.2929] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  48. A. Mironov, A. Morozov and A. Morozov, Matrix model version of AGT conjecture and generalized Selberg integrals, arXiv:1003.5752 [SPIRES].

  49. V.S. Dotsenko and V.A. Fateev, Conformal algebra and multipoint correlation functions in 2D statistical models, Nucl. Phys. B 240 (1984) 312 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  50. A. Gerasimov, A. Morozov, M. Olshanetsky, A. Marshakov and S.L. Shatashvili, Wess-Zumino-Witten model as a theory of free fields, Int. J. Mod. Phys. A 5 (1990) 2495 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  51. A. Gerasimov, A. Marshakov and A. Morozov, Free field representation of parafermions and related coset models, Nucl. Phys. B 328 (1989) 664 [Theor. Math. Phys. 83 (1990) 466] [Teor. Mat. Fiz. 83 (1990) 186] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  52. A. Gerasimov, A. Marshakov and A. Morozov, Hamiltonian reduction of Wess-Zumino-Witten theory from the point of view of bosonization, Phys. Lett. B 236 (1990) 269 [Sov. J. Nucl. Phys. 51 (1990) 371] [Yad. Fiz. 51 (1990) 583] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  53. A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  54. A. Zamolodchikov and A. Zamolodchikov, Conformal field theory and critical phenomena in 2D systems (in Russian), MCCME, Russia (2009).

    Google Scholar 

  55. D. Gaiotto, G.W. Moore and A. Neitzke, Four-dimensional wall-crossing via three-dimensional field theory, Commun. Math. Phys. (2010) [arXiv:0807.4723] [SPIRES].

  56. D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin systems and the WKB approximation, arXiv:0907.3987 [SPIRES].

  57. N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [SPIRES].

    MathSciNet  Google Scholar 

  58. A. Losev, N. Nekrasov and S.L. Shatashvili, Issues in topological gauge theory, Nucl. Phys. B 534 (1998) 549 [hep-th/9711108] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  59. A. Lossev, N. Nekrasov and S.L. Shatashvili, Testing Seiberg-Witten solution, hep-th/9801061 [SPIRES].

  60. G.W. Moore, N. Nekrasov and S. Shatashvili, Integrating over Higgs branches, Commun. Math. Phys. 209 (2000) 97 [hep-th/9712241] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  61. G.W. Moore, N. Nekrasov and S. Shatashvili, D-particle bound states and generalized instantons, Commun. Math. Phys. 209 (2000) 77 [hep-th/9803265] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  62. N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in \( \mathcal{N} = 2 \) supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  63. N. Seiberg and E. Witten, Monopole condensation, and confinement in \( \mathcal{N} = 2 \) supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  64. A. Hanany and Y. Oz, On the quantum moduli space of vacua of \( \mathcal{N} = 2 \) supersymmetric SU(N c ) gauge theories, Nucl. Phys. B 452 (1995) 283 [hep-th/9505075] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  65. A. Klemm, W. Lerche and S. Theisen, Nonperturbative effective actions of \( \mathcal{N} = 2 \) supersymmetric gauge theories, Int. J. Mod. Phys. A 11 (1996) 1929 [hep-th/9505150] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  66. P.C. Argyres and A.D. Shapere, The vacuum structure of \( \mathcal{N} = 2 \) superQCD with classical gauge groups, Nucl. Phys. B 461 (1996) 437 [hep-th/9509175] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  67. J. Sonnenschein, S. Theisen and S. Yankielowicz, On the relation between the holomorphic prepotential and the quantum moduli in SUSY gauge theories, Phys. Lett. B 367 (1996) 145 [hep-th/9510129] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  68. A. Gorsky, I. Krichever, A. Marshakov, A. Mironov and A. Morozov, Integrability and Seiberg-Witten exact solution, Phys. Lett. B 355 (1995) 466 [hep-th/9505035] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  69. R. Donagi and E. Witten, Supersymmetric Yang-Mills theory and integrable systems, Nucl. Phys. B 460 (1996) 299 [hep-th/9510101] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  70. H. Itoyama and A. Morozov, Integrability and Seiberg-Witten theory: curves and periods, Nucl. Phys. B 477 (1996) 855 [hep-th/9511126] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  71. H. Itoyama and A. Morozov, Prepotential and the Seiberg-Witten theory, Nucl. Phys. B 491 (1997) 529 [hep-th/9512161] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  72. H. Itoyama and A. Morozov, Integrability and Seiberg-Witten theory, hep-th/9601168 [SPIRES].

  73. N. Nekrasov, Five dimensional gauge theories and relativistic integrable systems, Nucl. Phys. B 531 (1998) 323 [hep-th/9609219] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  74. H.W. Braden, A. Marshakov, A. Mironov and A. Morozov, Seiberg-Witten theory for a non-trivial compactification from five to four dimensions, Phys. Lett. B 448 (1999) 195 [hep-th/9812078] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  75. H.W. Braden, A. Marshakov, A. Mironov and A. Morozov, WDVV equations for 6D Seiberg-Witten theory and bi-elliptic curves, hep-th/0606035 [SPIRES].

  76. A. Gorsky, A. Marshakov, A. Mironov and A. Morozov, RG equations from W hitham hierarchy, Nucl. Phys. B 527 (1998) 690 [hep-th/9802007] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  77. A. Gorsky, A. Marshakov, A. Mironov and A. Morozov, \( \mathcal{N} = 2 \) supersymmetric QCD and integrable spin chains: rational case N f < 2N c , Phys. Lett. B 380 (1996) 75 [hep-th/9603140] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  78. A. Gorsky, A. Marshakov, A. Mironov and A. Morozov, A note on spectral curve for the periodic homogeneous XYZ-spin chain, hep-th/9604078 [SPIRES].

  79. J.D. Edelstein, M. Gomez-Reino, M. Mariño and J. Mas, \( \mathcal{N} = 2 \) supersymmetric gauge theories with massive hypermultiplets and the Whitham hierarchy, Nucl. Phys. B 574 (2000) 587 [hep-th/9911115] [SPIRES].

    ADS  Google Scholar 

  80. J.D. Edelstein, M. Gomez-Reino and J. Mas, Instanton corrections in \( \mathcal{N} = 2 \) supersymmetric theories with classical gauge groups and fundamental matter hypermultiplets, Nucl. Phys. B 561 (1999) 273 [hep-th/9904087] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  81. A. Marshakov, A. Mironov and A. Morozov, More evidence for the WDVV equations in \( \mathcal{N} = 2 \) SUSY Yang-Mills theories, Int. J. Mod. Phys. A 15 (2000) 1157 [hep-th/9701123] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  82. F. Cachazo, K.A. Intriligator and C. Vafa, A large- \( \mathcal{N} \) duality via a geometric transition, Nucl. Phys. B 603 (2001) 3 [hep-th/0103067] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  83. R. Dijkgraaf and C. Vafa, Matrix models, topological strings and supersymmetric gauge theories, Nucl. Phys. B 644 (2002) 3 [hep-th/0206255] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  84. R. Dijkgraaf and C. Vafa, On geometry and matrix models, Nucl. Phys. B 644 (2002) 21 [hep-th/0207106] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  85. R. Dijkgraaf and C. Vafa, A perturbative window into non-perturbative physics, hep-th/0208048 [SPIRES].

  86. L. Chekhov and A. Mironov, Matrix models vs. Seiberg-Witten/Whitham theories, Phys. Lett. B 552 (2003) 293 [hep-th/0209085] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  87. H. Itoyama and A. Morozov, The Dijkgraaf-Vafa prepotential in the context of general Seiberg-Witten theory, Nucl. Phys. B 657 (2003) 53 [hep-th/0211245] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  88. H. Itoyama and A. Morozov, Experiments with the WDVV equations for the gluino-condensate prepotential: the cubic (two-cut) case, Phys. Lett. B 555 (2003) 287 [hep-th/0211259] [SPIRES].

    ADS  Google Scholar 

  89. H. Itoyama and A. Morozov, Gluino-condensate (CIV-DV) prepotential from its Whitham-time derivatives, Int. J. Mod. Phys. A 18 (2003) 5889 [hep-th/0301136] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  90. A. Klemm, M. Mariño and S. Theisen, Gravitational corrections in supersymmetric gauge theory and matrix models, JHEP 03 (2003) 051 [hep-th/0211216] [SPIRES].

    ADS  Google Scholar 

  91. H. Itoyama and H. Kanno, Supereigenvalue model and Dijkgraaf-Vafa proposal, Phys. Lett. B 573 (2003) 227 [hep-th/0304184] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  92. H. Itoyama and H. Kanno, W hitham prepotential and superpotential, Nucl. Phys. B 686 (2004) 155 [hep-th/0312306] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  93. S. Aoyama, The disc amplitude of the Dijkgraaf-Vafa theory: 1/N expansion vs. complex curve analysis, JHEP 10 (2005) 032 [hep-th/0504162] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  94. L. Chekhov, A. Marshakov, A. Mironov and D. Vasiliev, DV and WDVV, Phys. Lett. B 562 (2003) 323 [hep-th/0301071] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  95. L. Chekhov, A. Marshakov, A. Mironov and D. Vasiliev, Complex geometry of matrix models, Proc. Steklov Inst. Math. 251 (2005) 254 [hep-th/0506075] [SPIRES].

    Google Scholar 

  96. A. Mironov, Matrix models vs. matrix integrals, Theor. Math. Phys. 146 (2006) 63 [Teor. Mat. Fiz. 146 (2006) 77] [hep-th/0506158] [SPIRES].

    MathSciNet  Google Scholar 

  97. H. Itoyama and A. Morozov, Calculating gluino condensate prepotential, Prog. Theor. Phys. 109 (2003) 433 [hep-th/0212032] [SPIRES].

    ADS  Google Scholar 

  98. A.S. Alexandrov, A. Mironov and A. Morozov, Partition functions of matrix models as the first special functions of string theory. I: finite size Hermitean 1-matrix model, Int. J. Mod. Phys. A 19 (2004) 4127 [Teor. Mat. Fiz. 142 (2005) 419] [hep-th/0310113] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  99. A.S. Alexandrov, A. Mironov and A. Morozov, Unified description of correlators in non-Gaussian phases of Hermitean matrix model, Int. J. Mod. Phys. A 21 (2006) 2481 [hep-th/0412099] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  100. A.S. Alexandrov, A. Mironov and A. Morozov, Solving Virasoro constraints in matrix models, Fortsch. Phys. 53 (2005) 512 [hep-th/0412205] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  101. A.S. Alexandrov, A. Mironov and A. Morozov, M-theory of matrix models, Theor. Math. Phys. 150 (2007) 153 [Teor. Mat. Fiz. 150 (2007) 179] [hep-th/0605171] [SPIRES].

    Google Scholar 

  102. A.S. Alexandrov, A. Mironov and A. Morozov, Instantons and merons in matrix models, Physica D 235 (2007) 126 [hep-th/0608228] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  103. A.S. Alexandrov, A. Mironov, A. Morozov and P. Putrov, Partition functions of matrix models as the first special functions of string theory. II. Kontsevich model, Int. J. Mod. Phys. A 24 (2009) 4939 [arXiv:0811.2825] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  104. B. Eynard, Topological expansion for the 1-Hermitian matrix model correlation functions, JHEP 11 (2004) 031 [hep-th/0407261] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  105. L. Chekhov and B. Eynard, Hermitean matrix model free energy: Feynman graph technique for all genera, JHEP 03 (2006) 014 [hep-th/0504116] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  106. L. Chekhov and B. Eynard, Matrix eigenvalue model: Feynman graph technique for all genera, JHEP 12 (2006) 026 [math-ph/0604014] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  107. L. Chekhov, B. Eynard and N. Orantin, Free energy topological expansion for the 2-matrix model, JHEP 12 (2006) 053 [math-ph/0603003] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  108. N. Orantin, Symplectic invariants, Virasoro constraints and Givental decomposition, arXiv:0808.0635 [SPIRES].

  109. N. Orantin, Gaussian matrix model in an external field and non-intersecting Brownian motions, arXiv:0803.0705 [SPIRES].

  110. N. Orantin, From matrix models’ topological expansion to topological string theories: counting surfaces with algebraic geometry, arXiv:0709.2992 [SPIRES].

  111. B. Eynard and N. Orantin, Algebraic methods in random matrices and enumerative geometry, arXiv:0811.3531 [SPIRES].

  112. B. Eynard and N. Orantin, Topological expansion and boundary conditions, JHEP 06 (2008) 037 [arXiv:0710.0223] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  113. B. Eynard and N. Orantin, Invariants of algebraic curves and topological expansion, math-ph/0702045 [SPIRES].

  114. A. Kapustin and E. Witten, Electric-magnetic duality and the geometric Langlands program, hep-th/0604151 [SPIRES].

  115. E. Witten, Geometric Langlands from six dimensions, arXiv:0905.2720 [SPIRES].

  116. T. Okuda and V. Pestun, On the instantons and the hypermultiplet mass of \( \mathcal{N} = 2* \) super Yang-Mills on S 4, arXiv:1004.1222 [SPIRES].

  117. V. Pestun, Localization of the four-dimensional \( \mathcal{N} = 4 \) SYM to a two-sphere and 1/8 BPS Wilson loops, arXiv:0906.0638 [SPIRES].

  118. D. Gaiotto and E. Witten, S-duality of boundary conditions in \( \mathcal{N} = 4 \) super Yang-Mills theory, arXiv:0807.3720 [SPIRES].

  119. S. Gukov and E. Witten, Branes and quantization, arXiv:0809.0305 [SPIRES].

  120. E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  121. L.D. Faddeev and R.M. Kashaev, Quantum dilogarithm, Mod. Phys. Lett. A 9 (1994) 427 [hep-th/9310070] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  122. R.M. Kashaev, The hyperbolic volume of knots from the quantum dilogarithm, Lett. Math. Phys. 39 (1997) 269 [q-alg/9601025].

    MathSciNet  Google Scholar 

  123. H. Murakami and J. Murakami, The colored Jones polynomials and the simplicial volume of a knot, Acta Math. 186 (2001) 85 [math.GT/9905075].

    MathSciNet  Google Scholar 

  124. R. Dijkgraaf and H. Fuji, The volume conjecture and topological strings, Fortsch. Phys. 57 (2009) 825 [arXiv:0903.2084] [SPIRES].

    MathSciNet  Google Scholar 

  125. L.F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa and H. Verlinde, Loop and surface operators in \( \mathcal{N} = 2 \) gauge theory and Liouville modular geometry, JHEP 01 (2010) 113 [arXiv:0909.0945] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  126. A. Smirnov, Notes on Chern-Simons theory in the temporal gauge, arXiv:0910.5011 [SPIRES].

  127. T. Dimofte, S. Gukov and Y. Soibelman, Quantum wall crossing in \( \mathcal{N} = 2 \) gauge theories,arXiv:0912.1346 [SPIRES].

  128. A. Morozov and A. Smirnov, Chern-Simons theory in the temporal gauge and knot invariants through the universal quantum R-matrix, Nucl. Phys. B 835 (2010) 284 [arXiv:1001.2003] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  129. M. Mariño, Chern-Simons theory, the 1/N expansion and string theory, arXiv:1001.2542 [SPIRES].

  130. H. Fuji, Hyperbolic geometry and open topological strings, talk at Kyoto Workshop, March 2010.

  131. M.L. Mehta, Random matrices, Pure and Applied Mathematics Series 142, Elsevier, The Netherlands (2004).

    Google Scholar 

  132. B. Eynard and O. Marchal, Topological expansion of the Bethe ansatz and non-commutat ive algebraic geometry, JHEP 03 (2009) 094 [arXiv:0809.3367] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  133. P. Desrosiers, Duality in random matrix ensembles for all beta, Nucl. Phys. B 817 (2009) 224 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  134. A. Zabrodin, Random matrices and Laplacian growth, arXiv:0907.4929.

  135. P. Wiegmann and A. Zabrodin, Large- \( \mathcal{N} \) expansion of the 2D Dyson gas, J. Phys. A 39 (2006) 8933 [hep-th/0601009] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  136. P. Di Francesco, M. Gaudin, C. Itzykson and F. Lesage, Laughlin’s wave functions, Coulomb gases and expansions of the discriminant, Int. J. Mod. Phys. A9 (1994) 4257 [hep-th/9401163] [SPIRES].

    ADS  Google Scholar 

  137. L. Chekhov, B. Eynard and O. Marchal, Topological expansion of the Bethe ansatz and quantum algebraic geometry, arXiv:0911.1664 [SPIRES].

  138. S. Shakirov, Exact solution for mean energy of 2D Dyson gas at β = 1, arXiv:0912.5520 [SPIRES].

  139. A. Marshakov, A. Mironov and A. Morozov, Generalized matrix models as conformal field theories: discrete case, Phys. Lett. B 265 (1991) 99 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  140. S. Kharchev, A. Marshakov, A. Mironov, A. Morozov and S . Pakuliak, Conformal matrix models as an alternative to conventional multimatrix model s, Nucl. Phys. B 404 (1993) 717 [hep-th/9208044] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  141. V. Dolotin and A. Morozov, Introduction to non-linear algebra, World Scientific, Singapore (2007) [hep-th/0609022] [SPIRES].

    Google Scholar 

  142. A. Morozov and S. Shakirov, Introduction to integral discriminants, JHEP 12 (2009) 002 [arXiv:0903.2595] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  143. A. Morozov and S. Shakirov, New and old results in resultant theory, arXiv:0911.5278 [SPIRES].

  144. U.M. Svensson, A note on a certain non-Gaussian integral, arXiv:0912.3172 [SPIRES].

  145. K. Fujii, Beyond Gaussian: a comment, arXiv:0905.1363.

  146. K. Fujii, Beyond Gaussian, arXiv:0912.2135.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. Shakirov.

Additional information

ArXiv ePrint: 1004.2917

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morozov, A., Shakirov, S. The matrix model version of AGT conjecture and CIV-DV prepotential. J. High Energ. Phys. 2010, 66 (2010). https://doi.org/10.1007/JHEP08(2010)066

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2010)066

Keywords

Navigation