Skip to main content
Log in

Phases of large N vector Chern-Simons theories on S 2 × S 1

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the thermal partition function of level k U(N) Chern-Simons theories on S 2 interacting with matter in the fundamental representation. We work in the ’t Hooft limit, \( N,k\to \infty \), with \( \lambda ={N \left/ {k} \right.} \) and \( \frac{{{T^2}{V_2}}}{N} \) held fixed where T is the temperature and V 2 the volume of the sphere. An effective action proposed in arXiv:1211.4843 relates the partition function to the expectation value of a ‘potential’ function of the S1 holonomy in pure Chern-Simons theory; in several examples we compute the holonomy potential as a function of λ. We use level-rank duality of pure Chern-Simons theory to demonstrate the equality of thermal partition functions of previously conjectured dual pairs of theories as a function of the temperature. We reduce the partition function to a matrix integral over holonomies. The summation over flux sectors quantizes the eigenvalues of this matrix in units of \( \frac{{2\pi }}{k} \) and the eigenvalue density of the holonomy matrix is bounded from above by \( \frac{1}{{2\pi \lambda }} \). The corresponding matrix integrals generically undergo two phase transitions as a function of temperature. For several Chern-Simons matter theories we are able to exactly solve the relevant matrix models in the low temperature phase, and determine the phase transition temperature as a function of λ. At low temperatures our partition function smoothly matches onto the N and λ independent free energy of a gas of non renormalized multi trace operators. We also find an exact solution to a simple toy matrix model; the large N Gross-Witten-Wadia matrix integral subject to an upper bound on eigenvalue density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  2. O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, The Hagedorn-deconfinement phase transition in weakly coupled large-N gauge theories, Adv. Theor. Math. Phys. 8 (2004) 603 [hep-th/0310285] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Álvarez-Gaumé, C. Gomez, H. Liu and S. Wadia, Finite temperature effective action, AdS5 black holes and 1/N expansion, Phys. Rev. D 71 (2005) 124023 [hep-th/0502227] [INSPIRE].

    ADS  Google Scholar 

  4. L. Álvarez-Gaumé, P. Basu, M. Mariño and S.R. Wadia, Blackhole/String Transition for the Small Schwarzschild Blackhole of AdS 5 × S5 and Critical Unitary Matrix Models, Eur. Phys. J. C 48 (2006) 647 [hep-th/0605041] [INSPIRE].

    Article  ADS  Google Scholar 

  5. B. Sundborg, The Hagedorn transition, deconfinement and N = 4 SYM theory, Nucl. Phys. B 573 (2000) 349 [hep-th/9908001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, A first order deconfinement transition in large-N Yang-Mills theory on a small S 3, Phys. Rev. D 71 (2005) 125018 [hep-th/0502149] [INSPIRE].

    Article  ADS  Google Scholar 

  7. O. Aharony, J. Marsano and M. Van Raamsdonk, Two loop partition function for large-N pure Yang-Mills theory on a small S 3, Phys. Rev. D 74 (2006) 105012 [hep-th/0608156] [INSPIRE].

    ADS  Google Scholar 

  8. K. Papadodimas, H.-H. Shieh and M. Van Raamsdonk, A second order deconfinement transition for large-N 2+1 dimensional Yang-Mills theory on a small two-sphere, JHEP 04 (2007) 069 [hep-th/0612066] [INSPIRE].

    Article  ADS  Google Scholar 

  9. M. Mussel and R. Yacoby, The 2-loop partition function of large-N gauge theories with adjoint matter on S 3, JHEP 12 (2009) 005 [arXiv:0909.0407] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. D. Gross and E. Witten, Possible Third Order Phase Transition in the Large-N Lattice Gauge Theory, Phys. Rev. D 21 (1980) 446 [INSPIRE].

    ADS  Google Scholar 

  11. S.R. Wadia, A Study of U(N) Lattice Gauge Theory in 2-dimensions, arXiv:1212.2906 [INSPIRE].

  12. S.R. Wadia, N = ∞ Phase Transition in a Class of Exactly Soluble Model Lattice Gauge Theories, Phys. Lett. B 93 (1980) 403 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. R.D. Pisarski and S. Rao, Topologically Massive Chromodynamics in the Perturbative Regime, Phys. Rev. D 32 (1985) 2081 [INSPIRE].

    ADS  Google Scholar 

  14. W. Chen, G.W. Semenoff and Y.-S. Wu, Two loop analysis of nonAbelian Chern-Simons theory, Phys. Rev. D 46 (1992) 5521 [hep-th/9209005] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  15. S.H. Shenker and X. Yin, Vector Models in the Singlet Sector at Finite Temperature, arXiv:1109.3519 [INSPIRE].

  16. S. Giombi et al., Chern-Simons Theory with Vector Fermion Matter, Eur. Phys. J. C 72 (2012) 2112 [arXiv:1110.4386] [INSPIRE].

    Article  ADS  Google Scholar 

  17. C.-M. Chang, S. Minwalla, T. Sharma and X. Yin, ABJ Triality: from Higher Spin Fields to Strings, J. Phys. A 46 (2013) 214009 [arXiv:1207.4485] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  18. O. Aharony, G. Gur-Ari and R. Yacoby, D = 3 Bosonic Vector Models Coupled to Chern-Simons Gauge Theories, JHEP 03 (2012) 037 [arXiv:1110.4382] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. J. Maldacena and A. Zhiboedov, Constraining Conformal Field Theories with A Higher Spin Symmetry, J. Phys. A 46 (2013) 214011 [arXiv:1112.1016] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  20. J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a slightly broken higher spin symmetry, Class. Quant. Grav. 30 (2013) 104003 [arXiv:1204.3882] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. S. Banerjee, S. Hellerman, J. Maltz and S.H. Shenker, Light States in Chern-Simons Theory Coupled to Fundamental Matter, JHEP 03 (2013) 097 [arXiv:1207.4195] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. O. Aharony, G. Gur-Ari and R. Yacoby, Correlation Functions of Large-N Chern-Simons-Matter Theories and Bosonization in Three Dimensions, JHEP 12 (2012) 028 [arXiv:1207.4593] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. S. Jain, S.P. Trivedi, S.R. Wadia and S. Yokoyama, Supersymmetric Chern-Simons Theories with Vector Matter, JHEP 10 (2012) 194 [arXiv:1207.4750] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. S. Yokoyama, Chern-Simons-Fermion Vector Model with Chemical Potential, JHEP 01 (2013) 052 [arXiv:1210.4109] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. S. Banerjee et al., Smoothed Transitions in Higher Spin AdS Gravity, Class. Quant. Grav. 30 (2013) 104001 [arXiv:1209.5396] [INSPIRE].

    Article  ADS  Google Scholar 

  26. G. Gur-Ari and R. Yacoby, Correlators of Large-N Fermionic Chern-Simons Vector Models, JHEP 02 (2013) 150 [arXiv:1211.1866] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. O. Aharony, S. Giombi, G. Gur-Ari, J. Maldacena and R. Yacoby, The Thermal Free Energy in Large-N Chern-Simons-Matter Theories, JHEP 03 (2013) 121 [arXiv:1211.4843] [INSPIRE].

    Article  ADS  Google Scholar 

  28. A. Kapustin, B. Willett and I. Yaakov, Nonperturbative Tests of Three-Dimensional Dualities, JHEP 10 (2010) 013 [arXiv:1003.5694] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. A. Kapustin, B. Willett and I. Yaakov, Tests of Seiberg-like Duality in Three Dimensions, arXiv:1012.4021 [INSPIRE].

  30. O. Aharony, G. Gur-Ari and R. Yacoby, unpublished.

  31. F. Benini, C. Closset and S. Cremonesi, Comments on 3d Seiberg-like dualities, JHEP 10 (2011) 075 [arXiv:1108.5373] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. M. Blau and G. Thompson, Derivation of the Verlinde formula from Chern-Simons theory and the G/G model, Nucl. Phys. B 408 (1993) 345 [hep-th/9305010] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. M.R. Douglas and V.A. Kazakov, Large-N phase transition in continuum QCD in two-dimensions, Phys. Lett. B 319 (1993) 219 [hep-th/9305047] [INSPIRE].

    Article  ADS  Google Scholar 

  34. X. Arsiwalla, R. Boels, M. Mariño and A. Sinkovics, Phase transitions in q-deformed 2 − D Yang-Mills theory and topological strings, Phys. Rev. D 73 (2006) 026005 [hep-th/0509002] [INSPIRE].

    ADS  Google Scholar 

  35. N. Caporaso et al., Topological strings and large-N phase transitions. I. Nonchiral expansion of q-deformed Yang-Mills theory, JHEP 01 (2006) 035 [hep-th/0509041] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. D. Jafferis and J. Marsano, A DK phase transition in q-deformed Yang-Mills on S 2 and topological strings, hep-th/0509004 [INSPIRE].

  37. E. Witten, Quantum Field Theory and the Jones Polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N =4 SYM theory,Adv. Theor. Math. Phys. 5(2002) 809[hep-th/0111222][INSPIRE].

    MathSciNet  Google Scholar 

  39. C. Musili, Representations of Finite Groups, section 5.9.3, page 182, Hindustan Book Agency, (1992).

  40. M.R. Douglas, Chern-Simons-Witten theory as a topological Fermi liquid, hep-th/9403119 [INSPIRE].

  41. G. ’t Hooft, Topology of the Gauge Condition and New Confinement Phases in Nonabelian Gauge Theories, Nucl. Phys. B 190 (1981) 455 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. G. Grignani, L. Griguolo, N. Mori and D. Seminara, Thermodynamics of theories with sixteen supercharges in non-trivial vacua, JHEP 10 (2007) 068 [arXiv:0707.0052] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. T. Takimi, Duality and Higher Temperature Phases of Large-N Chern-Simons Matter Theories on S 2 × S 1, arXiv:1304.3725 [INSPIRE].

  44. A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. M. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3+1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. M. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS d , Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. S. Giombi and X. Yin, The Higher Spin/Vector Model Duality, J. Phys. A 46 (2013) 214003 [arXiv:1208.4036] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Jain.

Additional information

ArXiv ePrint: 1301.6169

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, S., Minwalla, S., Sharma, T. et al. Phases of large N vector Chern-Simons theories on S 2 × S 1 . J. High Energ. Phys. 2013, 9 (2013). https://doi.org/10.1007/JHEP09(2013)009

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2013)009

Keywords

Navigation