Skip to main content
Log in

Holographic equations of state and astrophysical compact objects

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We solve the Tolman-Oppenheimer-Volkoff equation using an equation of state (EoS) calculated in holographic QCD. The aim is to use compact astrophysical objects like neutron stars as an indicator to test holographic equations of state. We first try an EoS from a dense D4/D8/D8 model. In this case, however, we could not find a stable compact star, a star satisfying pressure-zero condition with a radius R, p(R) = 0, within a reasonable value of the radius. This means that the EoS from the D4/D8/D8 model may not support any stable compact stars or may support one whose radius is very large. This might be due to a deficit of attractive force from a scalar field or two-pion exchange in the D4/D8/D8 model. Then, we consider D4/D6 type models with different number of quark flavors, N f  = 1, 2, 3. Though the mass and radius of a holographic star is larger than those of normal neutron stars, the D4/D6 type EoS renders a stable compact star.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133] [hep-th/9711200] [ inSPIRE].

    Article  MathSciNet  Google Scholar 

  2. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [ inSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [ inSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  4. J. Erdmenger, N. Evans, I. Kirsch and E. Threlfall, Mesons in gauge/gravity duals — A review, Eur. Phys. J. A 35 (2008) 81 [arXiv:0711.4467] [ inSPIRE].

    ADS  Google Scholar 

  5. R. Peschanski, Introduction to string theory and gauge/gravity duality for students in QCD and QGP phenomenology, Acta Phys. Polon. B 39 (2008) 2479 [arXiv:0804.3210] [ inSPIRE].

    ADS  Google Scholar 

  6. S.S. Gubser and A. Karch, From gauge-string duality to strong interactions: a pedestrian’s Guide, Ann. Rev. Nucl. Part. Sci. 59 (2009) 145 [arXiv:0901.0935] [ inSPIRE].

    Article  ADS  Google Scholar 

  7. J. Erlich, How well does AdS/QCD describe QCD?, Int. J. Mod. Phys. A 25 (2010) 411 [arXiv:0908.0312] [ inSPIRE].

    ADS  Google Scholar 

  8. J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions, arXiv:1101.0618 [ inSPIRE].

  9. G.F. de Teramond and S.J. Brodsky, Light-front quantization and AdS/QCD: an overview, J. Phys. Conf. Ser. 287 (2011) 012007 [arXiv:1103.1100] [ inSPIRE].

    Article  ADS  Google Scholar 

  10. Y. Kim and D. Yi, Holography at work for nuclear and hadron physics, arXiv:1107.0155 [ inSPIRE].

  11. J.M. Lattimer and M. Prakash, Neutron star observations: prognosis for equation of state constraints, Phys. Rept. 442 (2007) 109 [astro-ph/0612440] [ inSPIRE].

    Article  ADS  Google Scholar 

  12. P. Demorest, T. Pennucci, S. Ransom, M. Roberts and J. Hessels, Shapiro delay measurement of a two solar mass neutron star, Nature 467 (2010) 1081 [arXiv:1010.5788] [ inSPIRE].

    Article  ADS  Google Scholar 

  13. T. Guver, D. Psaltis and F. Ozel, Systematic uncertainties in the spectroscopic measurements of neutron-star masses and radii from thermonuclear X -ray bursts. I. Apparent radii, arXiv:1103.5767 [ inSPIRE].

  14. T. Guver, F. Ozel and D. Psaltis, Systematic uncertainties in the spectroscopic measurements of neutron-star masses and radii from thermonuclear X -ray bursts. II. Eddington limit, arXiv:1104.2602 [ inSPIRE].

  15. T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [ inSPIRE].

    Article  ADS  MATH  Google Scholar 

  16. M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Towards a holographic dual of large-N c QCD, JHEP 05 (2004) 041 [hep-th/0311270] [ inSPIRE].

    Article  ADS  Google Scholar 

  17. Y. Seo and S.-J. Sin, Baryon mass in medium with holographic QCD, JHEP 04 (2008) 010 [arXiv:0802.0568] [ inSPIRE].

    Article  ADS  Google Scholar 

  18. Y. Kim, Y. Seo and S.-J. Sin, Nuclear matter to strange matter transition in holographic QCD, JHEP 03 (2010) 074 [arXiv:0911.3685] [ inSPIRE].

    Article  ADS  Google Scholar 

  19. E. Witten, Baryons and branes in Anti-de Sitter space, JHEP 07 (1998) 006 [hep-th/9805112] [ inSPIRE].

    ADS  Google Scholar 

  20. K.-Y. Kim, S.-J. Sin and I. Zahed, Dense hadronic matter in holographic QCD, hep-th/0608046 [ inSPIRE].

  21. N. Horigome and Y. Tanii, Holographic chiral phase transition with chemical potential, JHEP 01 (2007) 072 [hep-th/0608198] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. M. Rozali, H.-H. Shieh, M. Van Raamsdonk and J. Wu, Cold nuclear matter in holographic QCD, JHEP 01 (2008) 053 [arXiv:0708.1322] [ inSPIRE].

    Article  ADS  Google Scholar 

  23. O. Bergman, G. Lifschytz and M. Lippert, Holographic nuclear physics, JHEP 11 (2007) 056 [arXiv:0708.0326] [ inSPIRE].

    Article  ADS  Google Scholar 

  24. K.-Y. Kim, S.-J. Sin and I. Zahed, The chiral model of Sakai-Sugimoto at finite baryon density, JHEP 01 (2008) 002 [arXiv:0708.1469] [ inSPIRE].

    Article  ADS  Google Scholar 

  25. K. Jo, Y. Kim and S.-J. Sin, Holographic mesons in D4/D6 model revisited, arXiv:1104.2098 [ inSPIRE].

  26. K. Jo, M. Rho, Y. Seo and S.-J. Sin, The dropping of in-medium hadron mass in holographic QCD, JHEP 07 (2011) 008 [arXiv:1104.2362] [ inSPIRE].

    Article  ADS  Google Scholar 

  27. G. Baym, C. Pethick and P. Sutherland, The ground state of matter at high densities: equation of state and stellar models, Astrophys. J. 170 (1971) 299 [ inSPIRE].

    Article  ADS  Google Scholar 

  28. A. Akmal, V. Pandharipande and D. Ravenhall, The equation of state of nucleon matter and neutron star structure, Phys. Rev. C 58 (1998) 1804 [nucl-th/9804027] [ inSPIRE].

    ADS  Google Scholar 

  29. V.R. Pandharipande and D.G. Ravenhall, Hot nuclear matter, in Nuclear matter and heavy ion collisions, M. Soyeur et al. eds., NATO Science Series B 205, Plenum Press, U.S.A. (1990).

  30. F. Douchin and P. Haensel, A unified equation of state of dense matter and neutron star structure, Astron. & Astrophys.380 (2001) 151 [astro-ph/0111092] [ inSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mew-Bing Wan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y., Lee, CH., Shin, I.J. et al. Holographic equations of state and astrophysical compact objects. J. High Energ. Phys. 2011, 111 (2011). https://doi.org/10.1007/JHEP10(2011)111

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2011)111

Keywords

Navigation