Skip to main content
Log in

Higher derivative corrections to holographic entanglement entropy for AdS solitons

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate the behaviors of holographic entanglement entropy for AdS soliton geometries in the presence of higher derivative corrections. We calculate the leading higher derivative corrections for the AdS5 setup in type IIB string and for the AdS4,7 ones in M-theory. We also study the holographic entanglement entropy in Gauss-Bonnet gravity and study how the confinement/deconfinement phasetransition observed in AdS solitons is affected by the higher derivative corrections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].

    MathSciNet  ADS  MATH  Google Scholar 

  2. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. M. Headrick and T. Takayanagi, A holographic proof of the strong subadditivity of entanglement entropy, Phys. Rev. D 76 (2007) 106013 [arXiv:0704.3719] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  6. P. Hayden, M. Headrick and A. Maloney, Holographic mutual information is monogamous, arXiv:1107.2940 [SPIRES].

  7. S.N. Solodukhin, Entanglement entropy, conformal invariance and extrinsic geometry, Phys. Lett. B 665 (2008) 305 [arXiv:0802.3117] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  8. R. Lohmayer, H. Neuberger, A. Schwimmer and S. Theisen, Numerical determination of entanglement entropy for a sphere, Phys. Lett. B 685 (2010) 222 [arXiv:0911.4283] [SPIRES].

    ADS  Google Scholar 

  9. H. Casini and M. Huerta, Entanglement entropy for the n-sphere, Phys. Lett. B 694 (2010) 167 [arXiv:1007.1813] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  10. S.N. Solodukhin, Entanglement entropy of round spheres, Phys. Lett. B 693 (2010) 605 [arXiv:1008.4314] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  11. J.S. Dowker, Hyperspherical entanglement entropy, J. Phys. A 43 (2010) 445402 [arXiv:1007.3865] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  12. J.S. Dowker, Entanglement entropy for even spheres, arXiv:1009.3854 [SPIRES].

  13. H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [SPIRES].

    ADS  Google Scholar 

  15. P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory, J. Stat. Mech. (2009) P11001 [arXiv:0905.2069] [SPIRES].

  16. P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory II, J. Stat. Mech. (2011) P01021 [arXiv:1011.5482] [SPIRES].

  17. T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [SPIRES].

    MathSciNet  Google Scholar 

  18. P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009) 504005 [arXiv:0905.4013] [SPIRES].

    MathSciNet  Google Scholar 

  19. H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A 42 (2009) 504007 [arXiv:0905.2562] [SPIRES].

    MathSciNet  Google Scholar 

  20. L.-Y. Hung, R.C. Myers and M. Smolkin, On holographic entanglement entropy and higher curvature gravity, JHEP 04 (2011) 025 [arXiv:1101.5813] [SPIRES].

    Article  ADS  Google Scholar 

  21. J. de Boer, M. Kulaxizi and A. Parnachev, Holographic entanglement entropy in Lovelock gravities, JHEP 07 (2011) 109 [arXiv:1101.5781] [SPIRES].

    Article  ADS  Google Scholar 

  22. R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D 82 (2010) 046006 [arXiv:1006.1263] [SPIRES].

    ADS  Google Scholar 

  23. R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. D.V. Fursaev, Proof of the holographic formula for entanglement entropy, JHEP 09 (2006) 018 [hep-th/0606184] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. M.T. Grisaru and D. Zanon, σ-model superstring corrections to the Einstein-Hilbert action, Phys. Lett. B 177 (1986) 347 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  26. D.J. Gross and E. Witten, Superstring modifications of Einstein’s equations, Nucl. Phys. B 277 (1986) 1 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. M.D. Freeman, C.N. Pope, M.F. Sohnius and K.S. Stelle, Higher order σ-model counterterms and the effective action for superstrings, Phys. Lett. B 178 (1986) 199 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  28. Q.-H. Park and D. Zanon, More on σ-model β-functions and low-energy effective actions, Phys. Rev. D 35 (1987) 4038 [SPIRES].

    ADS  Google Scholar 

  29. E.S. Fradkin and A.A. Tseytlin, Quantum properties of higher dimensional and dimensionally reduced supersymmetric theories, Nucl. Phys. B 227 (1983) 252 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. M.B. Green and P. Vanhove, D-instantons, strings and M-theory, Phys. Lett. B 408 (1997) 122 [hep-th/9704145] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  31. M.B. Green, M. Gutperle and P. Vanhove, One loop in eleven dimensions, Phys. Lett. B 409 (1997) 177 [hep-th/9706175] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  32. J.G. Russo and A.A. Tseytlin, One-loop four-graviton amplitude in eleven-dimensional supergravity, Nucl. Phys. B 508 (1997) 245 [hep-th/9707134] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  33. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  34. T. Nishioka and T. Takayanagi, AdS bubbles, entropy and closed string tachyons, JHEP 01 (2007) 090 [hep-th/0611035] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  35. I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl. Phys. B 796 (2008) 274 [arXiv:0709.2140] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  36. A. Pakman and A. Parnachev, Topological entanglement entropy and holography, JHEP 07 (2008) 097 [arXiv:0805.1891] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. A. Velytsky, Entanglement entropy in d + 1 SU(N) gauge theory, Phys. Rev. D 77 (2008) 085021 [arXiv:0801.4111] [SPIRES].

    ADS  Google Scholar 

  38. P.V. Buividovich and M.I. Polikarpov, Numerical study of entanglement entropy in SU(2) lattice gauge theory, Nucl. Phys. B 802 (2008) 458 [arXiv:0802.4247] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. P.V. Buividovich and M.I. Polikarpov, Entanglement entropy in gauge theories and the holographic principle for electric strings, Phys. Lett. B 670 (2008) 141 [arXiv:0806.3376] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  40. Y. Nakagawa, A. Nakamura, S. Motoki and V.I. Zakharov, Entanglement entropy of SU(3) Yang-Mills theory, PoS(LAT2009)188 [arXiv:0911.2596] [SPIRES].

  41. Y. Nakagawa, A. Nakamura, S. Motoki and V.I. Zakharov, Quantum entanglement in SU(3) lattice Yang-Mills theory at zero and finite temperatures, PoS(Lattice 2010)281 [arXiv:1104.1011] [SPIRES].

  42. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. (2004) P06002 [hep-th/0405152] [SPIRES].

  43. D.V. Fursaev and S.N. Solodukhin, On the description of the Riemannian geometry in the presence of conical defects, Phys. Rev. D 52 (1995) 2133 [hep-th/9501127] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  44. S.N. Solodukhin, Entanglement entropy of black holes, arXiv:1104.3712 [SPIRES].

  45. S.S. Gubser, I.R. Klebanov and A.W. Peet, Entropy and temperature of black 3-branes, Phys. Rev. D 54 (1996) 3915 [hep-th/9602135] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  46. J. Pawełczyk and S. Theisen, AdS 5 × S 5 black hole metric at O(α′ 3 ), JHEP 09 (1998) 010 [hep-th/9808126] [SPIRES].

    Article  ADS  Google Scholar 

  47. M.M. Caldarelli and D. Klemm, M-theory and stringy corrections to anti-de Sitter black holes and conformal field theories, Nucl. Phys. B 555 (1999) 157 [hep-th/9903078] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  48. R. Aros, M. Contreras, R. Olea, R. Troncoso and J. Zanelli, Conserved charges for gravity with locally AdS asymptotics, Phys. Rev. Lett. 84 (2000) 1647 [gr-qc/9909015] [SPIRES].

    Article  ADS  Google Scholar 

  49. R. Olea, Mass, angular momentum and thermodynamics in four-dimensional Kerr-AdS black holes, JHEP 06 (2005) 023 [hep-th/0504233] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  50. O. Mišković and R. Olea, Topological regularization and self-duality in four-dimensional anti-de Sitter gravity, Phys. Rev. D 79 (2009) 124020 [arXiv:0902.2082] [SPIRES].

    ADS  Google Scholar 

  51. A. Buchel and R.C. Myers, Causality of holographic hydrodynamics, JHEP 08 (2009) 016 [arXiv:0906.2922] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  52. R.C. Myers and J.Z. Simon, Black hole thermodynamics in Lovelock gravity, Phys. Rev. D 38 (1988) 2434 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  53. D.G. Boulware and S. Deser, String generated gravity models, Phys. Rev. Lett. 55 (1985) 2656 [SPIRES].

    Article  ADS  Google Scholar 

  54. R.-G. Cai, Gauss-Bonnet black holes in AdS spaces, Phys. Rev. D 65 (2002) 084014 [hep-th/0109133] [SPIRES].

    ADS  Google Scholar 

  55. R.-G. Cai, S.P. Kim and B. Wang, Ricci flat black holes and Hawking-Page phase transition in Gauss-Bonnet gravity and dilaton gravity, Phys. Rev. D 76 (2007) 024011 [arXiv:0705.2469] [SPIRES].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriaki Ogawa.

Additional information

ArXiv ePrint: 1107.4363

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogawa, N., Takayanagi, T. Higher derivative corrections to holographic entanglement entropy for AdS solitons. J. High Energ. Phys. 2011, 147 (2011). https://doi.org/10.1007/JHEP10(2011)147

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2011)147

Keywords

Navigation