Skip to main content
Log in

Magnetic domains

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Recently a Nahm transform has been discovered for magnetic bags, which are conjectured to arise in the large n limit of magnetic monopoles of charge n. We interpret these ideas using string theory and present evidence for this conjecture. Our main result concerns the extension of the notion of bags and their Nahm transform to higher gauge theories and arbitrary domains. Bags in four dimensions conjecturally describe the large n limit of n self-dual strings. We show that the corresponding Basu-Harvey equation is the large n limit of an equation describing n M2-branes, and that it has a natural interpretation in loop space. We also formulate our Nahm equations using strong homotopy Lie algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D.-E. Diaconescu, D-branes, monopoles and Nahm equations, Nucl. Phys. B 503 (1997) 220 [hep-th/9608163] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. D. Tsimpis, Nahm equations and boundary conditions, Phys. Lett. B 433 (1998) 287 [hep-th/9804081] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. W. Nahm, All selfdual multi-monopoles for arbitrary gauge groups, presented at Int. Summer Inst. on Theoretical Physics, Freiburg West Germany, 31 August – 11 September 1981.

  4. N.J. Hitchin, On the construction of monopoles, Commun. Math. Phys. 89 (1983) 145 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. P.S. Howe, N. Lambert and P.C. West, The selfdual string soliton, Nucl. Phys. B 515 (1998) 203 [hep-th/9709014] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. A. Basu and J.A. Harvey, The M2-M5 brane system and a generalized Nahms equation, Nucl. Phys. B 713 (2005) 136 [hep-th/0412310] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. S. Terashima, On M5-branes in \( \mathcal{N}=6 \) membrane action, JHEP 08 (2008) 080 [arXiv:0807.0197] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. J. Gomis, D. Rodriguez-Gomez, M. Van Raamsdonk and H. Verlinde, A massive study of M2-brane proposals, JHEP 09 (2008) 113 [arXiv:0807.1074] [INSPIRE].

    Article  ADS  Google Scholar 

  9. K. Hanaki and H. Lin, M2-M5 systems in N = 6 Chern-Simons theory, JHEP 09 (2008) 067 [arXiv:0807.2074] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. D. Harland, The large N limit of the Nahm transform, Commun. Math. Phys. 311 (2012) 689 [arXiv:1102.3048] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. S. Bolognesi, Multi-monopoles, magnetic bags, bions and the monopole cosmological problem, Nucl. Phys. B 752 (2006) 93 [hep-th/0512133] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. P.-M. Ho and Y. Matsuo, M5 from M2, JHEP 06 (2008) 105 [arXiv:0804.3629] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. A. Gustavsson, Selfdual strings and loop space Nahm equations, JHEP 04 (2008) 083 [arXiv:0802.3456] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. C. Sämann, Constructing self-dual strings, Commun. Math. Phys. 305 (2011) 513 [arXiv:1007.3301] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  15. S. Palmer and C. Sämann, Constructing generalized self-dual strings, JHEP 10 (2011) 008 [arXiv:1105.3904] [INSPIRE].

    Article  ADS  Google Scholar 

  16. G.V. Dunne and V. Khemani, Numerical investigation of monopole chains, J. Phys. A 38 (2005) 9359 [hep-th/0506209] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  17. D. Harland and R.S. Ward, Dynamics of periodic monopoles, Phys. Lett. B 675 (2009) 262 [arXiv:0901.4428] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. S.A. Cherkis and A. Kapustin, Nahm transform for periodic monopoles and N = 2 super Yang-Mills theory, Commun. Math. Phys. 218 (2001) 333 [hep-th/0006050] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. R. Ward, Periodic monopoles, Phys. Lett. B 619 (2005) 177 [hep-th/0505254] [INSPIRE].

    ADS  Google Scholar 

  20. K.-M. Lee, Sheets of BPS monopoles and instantons with arbitrary simple gauge group, Phys. Lett. B 445 (1999) 387 [hep-th/9810110] [INSPIRE].

    ADS  Google Scholar 

  21. R. Ward, A monopole wall, Phys. Rev. D 75 (2007) 021701 [hep-th/0612047] [INSPIRE].

    ADS  Google Scholar 

  22. K.-M. Lee and E.J. Weinberg, BPS magnetic monopole bags, Phys. Rev. D 79 (2009) 025013 [arXiv:0810.4962] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  23. N. Manton, Monopole planets and galaxies, Phys. Rev. D 85 (2012) 045022 [arXiv:1111.2934] [INSPIRE].

    ADS  Google Scholar 

  24. P. Sutcliffe, Monopoles in AdS, JHEP 08 (2011) 032 [arXiv:1104.1888] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. F. Berezin, General concept of quantization, Commun. Math. Phys. 40 (1975) 153 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. A. Balachandran, S. Kurkcuoglu and S. Vaidya, Lectures on fuzzy and fuzzy SUSY physics, hep-th/0511114 [INSPIRE].

  27. C. Iuliu-Lazaroiu, D. McNamee and C. Sämann, Generalized Berezin quantization, Bergman metrics and fuzzy Laplacians, JHEP 09 (2008) 059 [arXiv:0804.4555] [INSPIRE].

    Article  ADS  Google Scholar 

  28. M. Bordemann, E. Meinrenken and M. Schlichenmaier, Toeplitz quantization of Kähler manifolds and \( \mathfrak{gl}(N) \) , N → ∞ limits, Commun. Math. Phys. 165 (1994) 281 [hep-th/9309134] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. M. Schlichenmaier, Berezin-Toeplitz quantization and Berezin symbols for arbitrary compact Kähler manifolds, math/9902066 [INSPIRE].

  30. R.E. Greene and K. Shiohama, Diffeomorphisms and volume-preserving embeddings of noncompact manifolds, Trans. Amer. Math. Soc. 225 (1979) 403.

    Article  MathSciNet  Google Scholar 

  31. M. Dunajski, Harmonic functions, central quadrics and twistor theory, Class. Quant. Grav. 20 (2003) 3427 [math/0303181] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. D. McDuff and D. Salamon, Introduction to symplectic topology, Oxford University Press, Oxford U.K. (1999).

    Google Scholar 

  33. G. Chalmers and A. Hanany, Three-dimensional gauge theories and monopoles, Nucl. Phys. B 489 (1997) 223 [hep-th/9608105] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  35. S.A. Cherkis, Moduli spaces of instantons on the Taub-NUT space, Commun. Math. Phys. 290 (2009) 719 [arXiv:0805.1245] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. S.A. Cherkis, C. O’Hara and C. Sämann, Super Yang-Mills Theory with impurity walls and instanton moduli spaces, Phys. Rev. D 83 (2011) 126009 [arXiv:1103.0042] [INSPIRE].

    ADS  Google Scholar 

  37. S.A. Cherkis and R.S. Ward, Moduli of monopole walls and amoebas, JHEP 05 (2012) 090 [arXiv:1202.1294] [INSPIRE].

    Article  ADS  Google Scholar 

  38. O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, Nucl. Phys. B 504 (1997) 239 [hep-th/9704170] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. J. Hurtubise and M. Murray, On the construction of monopoles for the classical groups, Commun. Math. Phys. 122 (1989) 35 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. R.C. Myers, Dielectric branes, JHEP 12 (1999) 022 [hep-th/9910053] [INSPIRE].

    Article  ADS  Google Scholar 

  41. N.R. Constable, R.C. Myers and O. Tafjord, The noncommutative bion core, Phys. Rev. D 61 (2000) 106009 [hep-th/9911136] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  42. V.T. Filippov, n-Lie algebras, Sib. Mat. Zh. 26 (1985) 126.

    MATH  Google Scholar 

  43. P.-A. Nagy, Prolongations of Lie algebras and applications, arXiv:0712.1398.

  44. Y. Nambu, Generalized Hamiltonian dynamics, Phys. Rev. D 7 (1973) 2405 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  45. L. Takhtajan, On foundation of the generalized Nambu mechanics (second version), Commun. Math. Phys. 160 (1994) 295 [hep-th/9301111] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, \( \mathcal{N}=6 \) superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. J. Bagger and N. Lambert, Three-algebras and \( \mathcal{N}=6 \) Chern-Simons gauge theories, Phys. Rev. D 79 (2009) 025002 [arXiv:0807.0163] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  48. J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  49. A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. J.C. Baez, A.E. Hoffnung and C.L. Rogers, Categorified symplectic geometry and the classical string, Commun. Math. Phys. 293 (2010) 701 [arXiv:0808.0246] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  51. M. Forger, C. Paufler and H. Roemer, The Poisson bracket for Poisson forms in multisymplectic field theory, Rev. Math. Phys. 15 (2003) 705 [math-ph/0202043] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  52. J.-L. Brylinski, Loop spaces, characteristic classes and geometric quantization, Birkhäuser, Boston U.S.A. (2007).

    Google Scholar 

  53. A. Ashtekar, T. Jacobson and L. Smolin, A new characterization of half flat solutions to Einsteins equation, Commun. Math. Phys. 115 (1988) 631 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. T. Lada and J. Stasheff, Introduction to SH Lie algebras for physicists, Int. J. Theor. Phys. 32 (1993) 1087 [hep-th/9209099] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  55. T. Lada and M. Markl, Strongly homotopy Lie algebras, hep-th/9406095 [INSPIRE].

  56. S. Merkulov, An L -algebra of an unobstructed deformation functor, Int. Math. Res. Not. 3 (2000) 147 [math.AG/9907031].

    Article  MathSciNet  Google Scholar 

  57. C. Lazaroiu, String field theory and brane superpotentials, JHEP 10 (2001) 018 [hep-th/0107162] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  58. S. Palmer and C. Sämann, M-brane models from non-abelian gerbes, JHEP 07 (2012) 010 [arXiv:1203.5757] [INSPIRE].

    Article  ADS  Google Scholar 

  59. J.C. Baez and A.S. Crans, Higher-dimensional algebra VI: Lie 2-algebras, Theor. Appl. Categor. 12 (2004) 492 [math/0307263] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  60. C. Iuliu-Lazaroiu, D. McNamee, C. Sämann and A. Zejak, Strong homotopy Lie algebras, generalized Nahm equations and multiple M2-branes, arXiv:0901.3905 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Palmer.

Additional information

ArXiv ePrint: 1204.6685

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harland, D., Palmer, S. & Sämann, C. Magnetic domains. J. High Energ. Phys. 2012, 167 (2012). https://doi.org/10.1007/JHEP10(2012)167

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2012)167

Keywords

Navigation