Skip to main content
Log in

Charged-Higgs phenomenology in the aligned two-Higgs-doublet model

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The alignment in flavour space of the Yukawa matrices of a general two-Higgs-doublet model results in the absence of tree-level flavour-changing neutral currents. In addition to the usual fermion masses and mixings, the aligned Yukawa structure only contains three complex parameters ς f , which are potential new sources of CP violation [1]. For particular values of these three parameters all known specific implementations of the model based on discrete \( {\mathcal{Z}_2} \) symmetries are recovered. One of the most distinctive features of the two-Higgs-doublet model is the presence of a charged scalar H ±. In this work, we discuss its main phenomenological consequences in flavour-changing processes at low energies and derive the corresponding constraints on the parameters of the aligned two-Higgs-doublet model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Pich and P. Tuzon, Yukawa alignment in the two-Higgs-doublet model, Phys. Rev. D 80 (2009) 091702 [arXiv:0908.1554] [SPIRES].

    ADS  Google Scholar 

  2. J. Gunion, H. Haber, G. Kane and S. Dawson, The Higgs hunters guide, Addison-Wesley, New York U.S.A. (1990).

    Google Scholar 

  3. G. C. Branco, L. Lavoura and J.P. Silva, CP violation, Oxford University Press, Oxford U.K. (1999).

    Google Scholar 

  4. S.L. Glashow and S. Weinberg, Natural conservation laws for neutral currents, Phys. Rev. D 15 (1977) 1958 [SPIRES].

    ADS  Google Scholar 

  5. H.E. Haber, G.L. Kane and T. Sterling, The Fermion mass scale and possible effects of Higgs bosons on experimental observables, Nucl. Phys. B 161 (1979) 493 [SPIRES].

    Article  ADS  Google Scholar 

  6. L.J. Hall and M.B. Wise, Flavor changing Higgs-boson couplings, Nucl. Phys. B 187 (1981) 397 [SPIRES].

    Article  ADS  Google Scholar 

  7. J.F. Donoghue and L.F. Li, Properties of Charged Higgs Bosons, Phys. Rev. D 19 (1979) 945 [SPIRES].

    ADS  Google Scholar 

  8. V.D. Barger, J.L. Hewett and R.J.N. Phillips, New constraints on the charged Higgs sector in two Higgs doublet models, Phys. Rev. D 41 (1990) 3421 [SPIRES].

    ADS  Google Scholar 

  9. M.J. Savage, Constraining flavor changing neutral currents with B → μ + μ , Phys. Lett. B 266 (1991) 135 [SPIRES].

    ADS  Google Scholar 

  10. Y. Grossman, Phenomenology of models with more than two Higgs doublets, Nucl. Phys. B 426 (1994) 355 [hep-ph/9401311] [SPIRES].

    Article  ADS  Google Scholar 

  11. A.G. Akeroyd, Fermiophobic and other non-minimal neutral Higgs bosons at the LHC, J. Phys. G 24 (1998) 1983 [hep-ph/9803324] [SPIRES].

    ADS  Google Scholar 

  12. A.G. Akeroyd, Non-minimal neutral Higgs bosons at LEP 2, Phys. Lett. B 377 (1996) 95 [hep-ph/9603445] [SPIRES].

    ADS  Google Scholar 

  13. A.G. Akeroyd and W.J. Stirling, Light charged Higgs scalars at high-energy e + e colliders, Nucl. Phys. B 447 (1995) 3 [SPIRES].

    Article  ADS  Google Scholar 

  14. M. Aoki, S. Kanemura, K. Tsumura and K. Yagyu, Models of Yukawa interaction in the two Higgs doublet model and their collider phenomenology, Phys. Rev. D 80 (2009) 015017 [arXiv:0902.4665] [SPIRES].

    ADS  Google Scholar 

  15. E. Ma, Utility of a special second scalar doublet, Mod. Phys. Lett. A 23 (2008) 647 [arXiv:0802.2917] [SPIRES].

    ADS  Google Scholar 

  16. E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [SPIRES].

    ADS  Google Scholar 

  17. R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: An alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [SPIRES].

    ADS  Google Scholar 

  18. L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H.G. Tytgat, The inert doublet model: an archetype for dark matter, JCAP 02 (2007) 028 [hep-ph/0612275] [SPIRES].

    ADS  Google Scholar 

  19. N. Cabibbo, Unitary symmetry and leptonic decays, Phys. Rev. Lett. 10 (1963) 531 [SPIRES].

    Article  ADS  Google Scholar 

  20. M. Kobayashi and T. Maskawa, CP violation in the renormalizable theory of weak interaction, Prog. Theor. Phys. 49 (1973) 652 [SPIRES].

    Article  ADS  Google Scholar 

  21. T.P. Cheng and M. Sher, Mass matrix ansatz and flavor nonconservation in models with multiple Higgs doublets, Phys. Rev. D 35 (1987) 3484 [SPIRES].

    ADS  Google Scholar 

  22. D. Atwood, L. Reina and A. Soni, Phenomenology of two Higgs doublet models with flavor changing neutral currents, Phys. Rev. D 55 (1997) 3156 [hep-ph/9609279] [SPIRES].

    ADS  Google Scholar 

  23. J.L. Diaz-Cruz, R. Noriega-Papaqui and A. Rosado, Measuring the fermionic couplings of the Higgs boson at future colliders as a probe of a non-minimal flavor structure, Phys. Rev. D 71 (2005) 015014 [hep-ph/0410391] [SPIRES].

    ADS  Google Scholar 

  24. J.L. Diaz-Cruz, J. Hernandez-Sanchez, S. Moretti, R. Noriega-Papaqui and A. Rosado, Yukawa textures and charged Higgs boson phenomenology in the 2HDM-III, Phys. Rev. D 79 (2009) 095025 [arXiv:0902.4490] [SPIRES].

    ADS  Google Scholar 

  25. S. Davidson and H.E. Haber, Basis-independent methods for the two-Higgs-doublet model, Phys. Rev. D 72 (2005) 035004 [hep-ph/0504050] [SPIRES].

    ADS  Google Scholar 

  26. P.M. Ferreira, L. Lavoura and J.P. Silva, Renormalization-group constraints on Yukawa alignment in multi-Higgs-doublet models, Phys. Lett. B 688 (2010) 341 [arXiv:1001.2561] [SPIRES].

    ADS  Google Scholar 

  27. G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavour violation: An effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [SPIRES].

    Article  ADS  Google Scholar 

  28. R. S. Chivukula and H. Georgi, Composite technicolor standard model, Phys. Lett. B 188 (1987) 99.

    ADS  Google Scholar 

  29. L.J. Hall and L. Randall, Weak scale effective supersymmetry, Phys. Rev. Lett. 65 (1990) 2939 [SPIRES].

    Article  ADS  Google Scholar 

  30. A.J. Buras, P. Gambino, M. Gorbahn, S. Jager and L. Silvestrini, Universal unitarity triangle and physics beyond the standard model, Phys. Lett. B 500 (2001) 161 [hep-ph/0007085] [SPIRES].

    ADS  Google Scholar 

  31. V. Cirigliano, B. Grinstein, G. Isidori and M.B. Wise, Minimal flavor violation in the lepton sector, Nucl. Phys. B 728 (2005) 121 [hep-ph/0507001] [SPIRES].

    Article  ADS  Google Scholar 

  32. A.L. Kagan, G. Perez, T. Volansky and J. Zupan, General minimal flavor violation, Phys. Rev. D 80 (2009) 076002 [arXiv:0903.1794] [SPIRES].

    ADS  Google Scholar 

  33. F.J. Botella, G.C. Branco and M.N. Rebelo, Minimal flavour violation and multi-Higgs models, Phys. Lett. B 687 (2010) 194 [arXiv:0911.1753] [SPIRES].

    ADS  Google Scholar 

  34. G. Cvetič, C.S. Kim and S.S. Hwang, Higgs-mediated flavor-changing neutral currents in the general framework with two Higgs doublets: an RGE analysis, Phys. Rev. D 58 (1998) 116003 [hep-ph/9806282] [SPIRES].

    ADS  Google Scholar 

  35. M. Jung, A. Pich and P. Tuzón, work in progress.

  36. D0 collaboration, V.M. Abazov et al., Evidence for an anomalous like-sign dimuon charge asymmetry, Phys. Rev. D 82 (2010) 032001 [arXiv:1005.2757] [SPIRES].

    ADS  Google Scholar 

  37. B.A. Dobrescu, P.J. Fox and A. Martin, CP violation in B s mixing from heavy Higgs exchange, Phys. Rev. Lett. 105 (2010) 041801 [arXiv:1005.4238] [SPIRES].

    Article  ADS  Google Scholar 

  38. A. Wahab El Kaffas, P. Osland and O.M. Ogreid, Constraining the two-Higgs-doublet-model parameter space, Phys. Rev. D 76 (2007) 095001 [arXiv:0706.2997] [SPIRES].

    ADS  Google Scholar 

  39. O. Deschamps et al., The Two higgs doublet of type II facing flavour physics data, arXiv:0907.5135 [SPIRES].

  40. H. Flacher et al., Gfitter — Revisiting the global electroweak fit of the standard model and beyond, Eur. Phys. J. C 60 (2009) 543 [arXiv:0811.0009] [SPIRES].

    Article  ADS  Google Scholar 

  41. UTfit collaboration, M. Bona et al., An improved standard model prediction of BR (Bτν) and its implications for new physics, Phys. Lett. B 687 (2010) 61 [arXiv:0908.3470] [SPIRES].

    ADS  Google Scholar 

  42. F. Mahmoudi and O. Stal, Flavor constraints on the two-Higgs-doublet model with general Yukawa couplings, Phys. Rev. D 81 (2010) 035016 [arXiv:0907.1791] [SPIRES].

    ADS  Google Scholar 

  43. A. Hocker, H. Lacker, S. Laplace and F. Le Diberder, A new approach to a global fit of the CKM matrix, Eur. Phys. J. C 21 (2001) 225 [hep-ph/0104062] [SPIRES].

    Article  ADS  Google Scholar 

  44. CKMfitter group, Average of lattice QCD inputs for CKM fits, http://ckmfitter.in2p3.fr/plots_Beauty09/latticeinputs280809.pdf (2009).

  45. G. Colangelo, The FLAG working group: status report, in EuroFlavour2009 November 9–11, Bari, Italy (2009).

  46. V. Lubicz, Kaon physics from lattice QCD, PoS(LAT2009)013 [arXiv:1004.3473] [SPIRES].

  47. P.A. Boyle et al., K → π form factors with reduced model dependence, arXiv:1004.0886 [SPIRES].

  48. P.A. Boyle et al., K l3 semileptonic form factor from 2+1 flavour lattice QCD, Phys. Rev. Lett. 100 (2008) 141601 [arXiv:0710.5136] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  49. ETM collaboration, V. Lubicz, F. Mescia, S. Simula, C. Tarantino and f.t.E. Collaboration, K → pion semileptonic form factors from two-flavor lattice QCD, Phys. Rev. D 80 (2009) 111502 [arXiv:0906.4728] [SPIRES].

    ADS  Google Scholar 

  50. H. Leutwyler and M. Roos, Determination of the elements V us and V ud of the Kobayashi-Maskawa matrix, Z. Phys. C 25 (1984) 91 [SPIRES].

    ADS  Google Scholar 

  51. J. Bijnens and P. Talavera, K l3 decays in chiral perturbation theory, Nucl. Phys. B 669 (2003) 341 [hep-ph/0303103] [SPIRES].

    Article  ADS  Google Scholar 

  52. M. Jamin, J.A. Oller and A. Pich, Order p 6 chiral couplings from the scalar Kπ form-factor, JHEP 02 (2004) 047 [hep-ph/0401080] [SPIRES].

    Article  ADS  Google Scholar 

  53. V. Cirigliano et al., TheSPPGreen function and SU(3) breaking in K l3 decays, JHEP 04 (2005) 006 [hep-ph/0503108] [SPIRES].

    Article  ADS  Google Scholar 

  54. A. Kastner and H. Neufeld, The K l3 scalar form factors in the standard model, Eur. Phys. J. C 57 (2008) 541 [arXiv:0805.2222] [SPIRES].

    Article  ADS  Google Scholar 

  55. M. Wingate, C.T.H. Davies, A. Gray, G.P. Lepage and J. Shigemitsu, The B s and D s decay constants in 3 flavor lattice QCD, Phys. Rev. Lett. 92 (2004) 162001 [hep-ph/0311130] [SPIRES].

    Article  ADS  Google Scholar 

  56. HPQCD collaboration, E. Gamiz, C.T.H. Davies, G.P. Lepage, J. Shigemitsu and M. Wingate, Neutral B meson mixing in unquenched lattice QCD, Phys. Rev. D 80 (2009) 014503 [arXiv:0902.1815] [SPIRES].

    ADS  Google Scholar 

  57. C. Bernard et al., B and D meson decay constants, PoS(LATTICE 2008)278 [arXiv:0904.1895] [SPIRES].

  58. HPQCD collaboration, E. Follana, C.T.H. Davies, G.P. Lepage and J. Shigemitsu, High Precision determination of the π, K, D and D s decay constants from lattice QCD, Phys. Rev. Lett. 100 (2008) 062002 [arXiv:0706.1726] [SPIRES].

    Article  ADS  Google Scholar 

  59. C. Bernard et al., Status of the MILC light pseudoscalar meson project, PoS(LATTICE 2007)090 [arXiv:0710.1118] [SPIRES].

  60. S. Dürr et al., The ratio F K /F π in QCD, Phys. Rev. D 81 (2010) 054507 [arXiv:1001.4692] [SPIRES].

    ADS  Google Scholar 

  61. C. Aubin, J. Laiho and R.S. Van de Water, The neutral kaon mixing parameter B K from unquenched mixed-action lattice QCD, Phys. Rev. D 81 (2010) 014507 [arXiv:0905.3947] [SPIRES].

    ADS  Google Scholar 

  62. RBC collaboration, C. Kelly, P.A. Boyle and C.T. Sachrajda, Continuum results for light hadrons from 2+1 flavor DWF ensembles, PoS(LAT2009)087 [arXiv:0911.1309] [SPIRES].

  63. J.C. Hardy and I.S. Towner, Superallowed 0+ to 0+ nuclear beta decays: a new survey with precision tests of the conserved vector current hypothesis and the standard model, Phys. Rev. C 79 (2009) 055502 [arXiv:0812.1202] [SPIRES].

    ADS  Google Scholar 

  64. M. Antonelli et al., Flavor physics in the quark sector, Phys. Rept. 494 (2010) 197 [arXiv:0907.5386] [SPIRES].

    Article  ADS  Google Scholar 

  65. Heavy Flavor Averaging Group collaboration, E. Barberio et al., Averages of b-hadron and c-hadron properties at the end of 2007, arXiv:0808.1297 [SPIRES].

  66. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  67. Tevatron Electroweak Working Group and CDF and D0 collaboration, Combination of CDF and D0 results on the mass of the top quark, arXiv:0903.2503 [SPIRES].

  68. W.J. Marciano, Precise determination of |V us | from lattice calculations of pseudoscalar decay constants, Phys. Rev. Lett. 93 (2004) 231803 [hep-ph/0402299] [SPIRES].

    Article  ADS  Google Scholar 

  69. V. Cirigliano and I. Rosell, π/K → eν branching ratios to O(e 2 p 4) in chiral perturbation theory, JHEP 10 (2007) 005 [arXiv:0707.4464] [SPIRES].

    Article  ADS  Google Scholar 

  70. V. Cirigliano and I. Rosell, Two-loop effective theory analysis of \( \pi (K) \to e{\bar{\nu }_e}\left[ \gamma \right] \) branching ratios, Phys. Rev. Lett. 99 (2007) 231801 [arXiv:0707.3439] [SPIRES].

    Article  ADS  Google Scholar 

  71. M. Antonelli et al., An evaluation of |V us | and precise tests of the standard model from world data on leptonic and semileptonic kaon decays, arXiv:1005.2323 [SPIRES].

  72. R. Decker and M. Finkemeier, Short and long distance effects in the decay τ → πτ-neutrino (γ), Nucl. Phys. B 438 (1995) 17 [hep-ph/9403385] [SPIRES].

    Article  ADS  Google Scholar 

  73. R. Decker and M. Finkemeier, Radiative corrections to the decay τ → πτ neutrino, Nucl. Phys. Proc. Suppl. 40 (1995) 453 [hep-ph/9411316] [SPIRES].

    Article  ADS  Google Scholar 

  74. W.J. Marciano and A. Sirlin, Radiative corrections to π 2 decays, Phys. Rev. Lett. 71 (1993) 3629 [SPIRES].

    Article  ADS  Google Scholar 

  75. G.M. de Divitiis, R. Petronzio and N. Tantalo, Quenched lattice calculation of semileptonic heavy-light meson form factors, JHEP 10 (2007) 062 [arXiv:0707.0587] [SPIRES].

    Article  ADS  Google Scholar 

  76. ALEPH collaboration, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [SPIRES].

    ADS  Google Scholar 

  77. G. Degrassi and P. Slavich, QCD corrections in two-Higgs-doublet extensions of the standard model with minimal flavor violation, Phys. Rev. D 81 (2010) 075001 [arXiv:1002.1071] [SPIRES].

    ADS  Google Scholar 

  78. A. J. Buras, D. Guadagnoli and G. Isidori, On ϵ K beyond lowest order in the operator product expansion, Phys. Lett. B 688 (2010) 309 [arXiv:1002.3612] [SPIRES].

    ADS  Google Scholar 

  79. UTfit collaboration, M. Bona et al., The 2004 UTfit collaboration report on the status of the unitarity triangle in the standard model, JHEP 07 (2005) 028 [hep-ph/0501199] [SPIRES].

    Article  ADS  Google Scholar 

  80. CKMfitter Group collaboration, J. Charles et al., CP violation and the CKM matrix: assessing the impact of the asymmetric B factories, Eur. Phys. J. C 41 (2005) 1 [hep-ph/0406184] [SPIRES].

    Article  ADS  Google Scholar 

  81. LEP Working Group for Higgs boson searches, Search for charged Higgs bosons: Preliminary combined results using LEP data collected at en ergies up to 209 GeV, [hep-ex/0107031].

  82. OPAL collaboration, G. Abbiendi et al., Search for charged Higgs bosons in e + e collisions at \( \sqrt {s} = 1.89 - 209\;GeV \), arXiv:0812.0267 [SPIRES].

  83. BABAR collaboration, B. Aubert et al., Measurements of charged current lepton universality and |V us | using τ lepton decays to \( {e^{-} }{\bar{\nu }_e}{\nu_\tau } \) , \( {\mu^{-} }{\bar{\nu }_\mu }{\nu_\tau } \) , π ν τ and K ν τ , Phys. Rev. Lett. 105 (2010) 051602 [arXiv:0912.0242] [SPIRES].

    Article  ADS  Google Scholar 

  84. CLEO collaboration, B.I. Eisenstein et al., Precision measurement of B (D +μ + ν) and the pseudoscalar decay constant f D+, Phys. Rev. D 78 (2008) 052003 [arXiv:0806.2112] [SPIRES].

    ADS  Google Scholar 

  85. CLEO collaboration, J.P. Alexander et al., Measurement of BD s + + ν and the decay Constant \( {f_{D_s^{+} }} \) from 600/pb −1 of e ± annihilation data near 4170 MeV, Phys. Rev. D 79 (2009) 052001 [arXiv:0901.1216] [SPIRES].

    ADS  Google Scholar 

  86. CLEO collaboration, P.U.E. Onyisi et al., Improved measurement of absolute branching fraction of D s → τν, Phys. Rev. D 79 (2009) 052002 [arXiv:0901.1147] [SPIRES].

    ADS  Google Scholar 

  87. CLEO collaboration, P. Naik et al., Measurement of the pseudoscalar decay constant \( {f_{{D_s}}} \) using D +s → τ + ν, \( {\tau^{+} } \to {\rho^{+} }\mathop {{nu}}\limits^\_ \) decays, Phys. Rev. D 80 (2009) 112004 [arXiv:0910.3602] [SPIRES].

    ADS  Google Scholar 

  88. The BABAR collaboration, J.P. Lees et al., Measurement of the branching fraction for D +s → τ + ν τ and extraction of the decay constant \( {f_{{D_s}}} \), arXiv:1003.3063 [SPIRES].

  89. J.L. Rosner and S. Stone, Leptonic decays of charged pseudoscalar mesons, arXiv:1002.1655 [SPIRES].

  90. Belle collaboration, K. Abe et al., Measurement of B (D s → μν), Phys. Rev. Lett. 100 (2008) 241801 [arXiv:0709.1340] [SPIRES].

    Article  Google Scholar 

  91. KLOE collaboration, F. Ambrosino et al., Measurement of the K L → πμν form factor parameters with the KLOE detector, JHEP 12 (2007) 105 [arXiv:0710.4470] [SPIRES].

    ADS  Google Scholar 

  92. KTeV collaboration, E. Abouzaid et al., Dispersive analysis of K 3 and K Le3 scalar and vector form factors using KTeV data, Phys. Rev. D 81 (2010) 052001 [arXiv:0912.1291] [SPIRES].

    ADS  Google Scholar 

  93. BABAR collaboration, B. Aubert et al., Measurement of the semileptonic decays \( B \to D{\tau^{-} }{\bar{\nu }_t}au \) and \( B \to D^*{\tau^{-} }{\bar{\nu }_\tau } \), Phys. Rev. D 79 (2009) 092002 [arXiv:0902.2660] [SPIRES].

    ADS  Google Scholar 

  94. Belle collaboration, A. Bozek et al., Observation of \( {B^{+} } \to {\bar{D}^{*0}}{\tau^{+} }{\nu_\tau } \) and evidence for \( {B^{+} } \to {\bar{D}^0}{\tau^{+} }{\nu_\tau } \) at Belle, arXiv:1005.2302 [SPIRES].

  95. Belle collaboration, I. Adachi et al., Measurement of B → D (∗) τν using full reconstruction tags, arXiv:0910.4301 [SPIRES].

  96. ALEPH, CDF, D0, DELPHI, L3, OPAL and SLD collaborations, J. Alcaraz, Precision electroweak measurements and constraints on the standard model, arXiv:0911.2604 [SPIRES].

  97. A. Pich, Tau physics: theory overview, Nucl. Phys. Proc. Suppl. 181-182 (2008) 300 [arXiv:0806.2793] [SPIRES].

    Article  Google Scholar 

  98. A. Pich, Tau physics, Adv. Ser. Direct. High Energy Phys. 15 (1998) 453 [hep-ph/9704453] [SPIRES].

    Article  Google Scholar 

  99. A. Pich and J.P. Silva, Constraining new interactions with leptonic τ decays, Phys. Rev. D 52 (1995) 4006 [hep-ph/9505327] [SPIRES].

    ADS  Google Scholar 

  100. W.J. Marciano and A. Sirlin, Electroweak radiative corrections to τ Decay, Phys. Rev. Lett. 61 (1988) 1815 [SPIRES].

    Article  ADS  Google Scholar 

  101. A.J. Buras, P.H. Chankowski, J. Rosiek and L. Slawianowska, ΔM d,s , B 0 d, s → μ + μ and B → X s γ in supersymmetry at large tan β, Nucl. Phys. B 659 (2003) 3 [hep-ph/0210145] [SPIRES].

    Article  ADS  Google Scholar 

  102. A.G. Akeroyd and S. Recksiegel, The effect of H ± on B ± → τ ± ν τ and B ± → μ ± ν μ , J. Phys. G 29 (2003) 2311 [hep-ph/0306037] [SPIRES].

    ADS  Google Scholar 

  103. G. Burdman, J.T. Goldman and D. Wyler, Radiative leptonic decays of heavy mesons, Phys. Rev. D 51 (1995) 111 [hep-ph/9405425] [SPIRES].

    ADS  Google Scholar 

  104. J.F. Kamenik and F. Mescia, B → Dτν branching ratios: opportunity for lattice QCD and hadron colliders, Phys. Rev. D 78 (2008) 014003 [arXiv:0802.3790] [SPIRES].

    ADS  Google Scholar 

  105. U. Nierste, S. Trine and S. Westhoff, Charged-Higgs effects in a new B → Dτν differential decay distribution, Phys. Rev. D 78 (2008) 015006 [arXiv:0801.4938] [SPIRES].

    ADS  Google Scholar 

  106. C.G. Callan and S.B. Treiman, Equal time commutators and K meson decays, Phys. Rev. Lett. 16 (1966) 153 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  107. R.F. Dashen and M. WEinstein, Theorem on the form-factors in K l3 decay, Phys. Rev. Lett. 22 (1969) 1337 [SPIRES].

    Article  ADS  Google Scholar 

  108. J. Gasser and H. Leutwyler, Low-energy expansion of meson form-factors, Nucl. Phys. B 250 (1985) 517 [SPIRES].

    Article  ADS  Google Scholar 

  109. E. Passemar, Precision SM calculations and theoretical interests beyon d the SM in K l2 and K l3 decays, PoS(KAON09)024 [arXiv:1003.4696] [SPIRES].

  110. V. Bernard, M. Oertel, E. Passemar and J. Stern, K L μ3 decay: a stringent test of right-handed quark currents, Phys. Lett. B 638 (2006) 480 [hep-ph/0603202] [SPIRES].

    ADS  Google Scholar 

  111. NA48 collaboration, A. Lai et al., Measurement of K μ3 0 form factors, Phys. Lett. B 647 (2007) 341 [hep-ex/0703002] [SPIRES].

    ADS  Google Scholar 

  112. J. Bernabeu, A. Pich and A. Santamaria, Gamma \( \left( {Z \to B\bar{B}} \right) \) : a signature of hard mass terms for a heavy top, Phys. Lett. B 200 (1988) 569 [SPIRES].

    ADS  Google Scholar 

  113. J. Bernabeu, A. Pich and A. Santamaria, Top quark mass from radiative corrections to the \( Z \to b\bar{b} \) decay, Nucl. Phys. B 363 (1991) 326 [SPIRES].

    Article  ADS  Google Scholar 

  114. H.E. Haber and H.E. Logan, Radiative corrections to the \( Zb\bar{b} \) vertex and constraints on extended Higgs sectors, Phys. Rev. D 62 (2000) 015011 [hep-ph/9909335] [SPIRES].

    ADS  Google Scholar 

  115. J.H. Field, Indications for an anomalous righthanded coupling of the b-quark from a model independent analysis of LEP and SLD data on Z decays, Mod. Phys. Lett. A 13 (1998) 1937 [hep-ph/9801355] [SPIRES].

    ADS  Google Scholar 

  116. K.G. Chetyrkin, J.H. Kuhn and A. Kwiatkowski, QCD corrections to the e + e cross-section and the Z boson decay rate: concepts and results, Phys. Rept. 277 (1996) 189 [SPIRES].

    Article  ADS  Google Scholar 

  117. J.M. Gerard, W. Grimus, A. Raychaudhuri and G. Zoupanos, Super Kobayashi-Maskawa CP-violation, Phys. Lett. B 140 (1984) 349 [SPIRES].

    ADS  Google Scholar 

  118. F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model, Nucl. Phys. B 477 (1996) 321 [hep-ph/9604387] [SPIRES].

    Article  ADS  Google Scholar 

  119. A.J. Buras, S. Jager and J. Urban, Master formulae for Δ(F) = 2 NLO-QCD factors in the standard model and beyond, Nucl. Phys. B 605 (2001) 600 [hep-ph/0102316] [SPIRES].

    Article  ADS  Google Scholar 

  120. D. Becirevic et al., \( {B_d} - {\bar{B}_d} \) mixing and the B d J/ψK s asymmetry in general SUSY models, Nucl. Phys. B 634 (2002) 105 [hep-ph/0112303] [SPIRES].

    Article  ADS  Google Scholar 

  121. J. Urban, F. Krauss, U. Jentschura and G. Soff, Next-to-leading order QCD corrections for the \( {B^0} - {\bar{B}^0} \) mixing with an extended Higgs sector, Nucl. Phys. B 523 (1998) 40 [hep-ph/9710245] [SPIRES].

    Article  ADS  Google Scholar 

  122. A. Lenz and U. Nierste, Theoretical update of \( {B_s} - {\bar{B}_s} \) mixing, JHEP 06 (2007) 072 [hep-ph/0612167] [SPIRES].

    Article  ADS  Google Scholar 

  123. M. Ciuchini, E. Franco, V. Lubicz, F. Mescia and C. Tarantino, Lifetime differences and CP-violation parameters of neutral B mesons at the next-to-leading order in QCD, JHEP 08 (2003) 031 [hep-ph/0308029] [SPIRES].

    Article  ADS  Google Scholar 

  124. D0 collaboration, V.M. Abazov et al., Search for CP-violation in semileptonic B s decays, Phys. Rev. D 82 (2010) 012003 [arXiv:0904.3907] [SPIRES].

    ADS  Google Scholar 

  125. B. Grinstein, Global duality in heavy flavor hadronic decays, Phys. Lett. B 529 (2002) 99 [hep-ph/0112323] [SPIRES].

    ADS  Google Scholar 

  126. B. Grinstein, Global duality in heavy flavor decays in the ’t Hooft model, Phys. Rev. D 64 (2001) 094004 [hep-ph/0106205] [SPIRES].

    ADS  Google Scholar 

  127. C. Berger and L.M. Sehgal, An upper limit on CP-violation in the \( B_s^0 - \bar{B}_s^0 \) system, arXiv:1007.2996 [SPIRES].

  128. C.W. Bauer and N.D. Dunn, Comment on new physics contributions to Γ12 s, arXiv:1006.1629 [SPIRES].

  129. A. Dighe, A. Kundu and S. Nandi, Enhanced \( {B_s} - {\bar{B}_s} \) lifetime difference and anomalous like-sign dimuon charge asymmetry from new physics in B s → τ + τ , Phys. Rev. D 82 (2010) 031502 [arXiv:1005.4051] [SPIRES].

    ADS  Google Scholar 

  130. N.G. Deshpande, X.-G. He and G. Valencia, D0 dimuon asymmetry in \( {B_s} - {\bar{B}_s} \) mixing and constraints on new physics, Phys. Rev. D 82 (2010) 056013 [arXiv:1006.1682] [SPIRES].

    ADS  Google Scholar 

  131. D0 collaboration, V.M. Abazov et al., Lifetime difference and CP-violating phase in the B 0s system, Phys. Rev. Lett. 98 (2007) 121801 [hep-ex/0701012] [SPIRES].

    Article  ADS  Google Scholar 

  132. CDF collaboration, T. Aaltonen et al., First flavor-tagged determination of bounds on mixing-induced CP-violation in B s 0J/ψϕ decays, Phys. Rev. Lett. 100 (2008) 161802 [arXiv:0712.2397] [SPIRES].

    Article  ADS  Google Scholar 

  133. D0 collaboration, V.M. Abazov et al., Measurement of B s 0 mixing parameters from the flavor-tagged decay B s 0J/ψϕ, Phys. Rev. Lett. 101 (2008) 241801 [arXiv:0802.2255] [SPIRES].

    Article  ADS  Google Scholar 

  134. T. Feldmann, M. Jung and T. Mannel, Is there a non-standard-model contribution in non-leptonic b → s decays?, JHEP 08 (2008) 066 [arXiv:0803.3729] [SPIRES].

    Article  ADS  Google Scholar 

  135. A.J. Buras and D. Guadagnoli, Correlations among new CP-violating effects in ΔF = 2 observables, Phys. Rev. D 78 (2008) 033005 [arXiv:0805.3887] [SPIRES].

    ADS  Google Scholar 

  136. M. Misiak et al., The first estimate of \( B\left( {\bar{B} \to {X_s}\gamma } \right) \) at O(α s 2 ), Phys. Rev. Lett. 98 (2007) 022002 [hep-ph/0609232] [SPIRES].

    Article  ADS  Google Scholar 

  137. M. Ciuchini, G. Degrassi, P. Gambino and G.F. Giudice, Next-to-leading QCD corrections to B → X s γ: standard model and two-Higgs doublet model, Nucl. Phys. B 527 (1998) 21 [hep-ph/9710335] [SPIRES].

    Article  ADS  Google Scholar 

  138. F. Borzumati and C. Greub, 2 HDMs predictions for \( \bar{B} \to {X_s}\gamma \) in NLO QCD, Phys. Rev. D 58 (1998) 074004 [hep-ph/9802391] [SPIRES].

    ADS  Google Scholar 

  139. P. Ciafaloni, A. Romanino and A. Strumia, Two-loop QCD corrections to charged-Higgs-mediated b → sγ decay, Nucl. Phys. B 524 (1998) 361 [hep-ph/9710312] [SPIRES].

    Article  ADS  Google Scholar 

  140. M. Misiak and M. Steinhauser, NNLO QCD corrections to the B → X s γ matrix elements using interpolation in m c , Nucl. Phys. B 764 (2007) 62 [hep-ph/0609241] [SPIRES].

    Article  ADS  Google Scholar 

  141. C.W. Bauer, Z. Ligeti, M. Luke, A.V. Manohar and M. Trott, Global analysis of inclusive B decays, Phys. Rev. D 70 (2004) 094017 [hep-ph/0408002] [SPIRES].

    ADS  Google Scholar 

  142. P. Gambino and M. Misiak, Quark mass effects in B → X s γ, Nucl. Phys. B 611 (2001) 338 [hep-ph/0104034] [SPIRES].

    Article  ADS  Google Scholar 

  143. C.W. Bauer, Corrections to moments of the photon spectrum in the inclusive decay B → X s γ, Phys. Rev. D 57 (1998) 5611 [hep-ph/9710513] [SPIRES].

    ADS  Google Scholar 

  144. M. Neubert, Renormalization-group improved calculation of the B → X s + γ branching ratio, Eur. Phys. J. C 40 (2005) 165 [hep-ph/0408179] [SPIRES].

    Article  ADS  Google Scholar 

  145. H.E. Logan and D. MacLennan, Charged Higgs phenomenology in the lepton-specific two Higgs doublet model, Phys. Rev. D 79 (2009) 115022 [arXiv:0903.2246] [SPIRES].

    ADS  Google Scholar 

  146. H.E. Logan and D. MacLennan, Charged Higgs phenomenology in the flipped two Higgs doublet model, Phys. Rev. D 81 (2010) 075016 [arXiv:1002.4916] [SPIRES].

    ADS  Google Scholar 

  147. A.G. Akeroyd, C.H. Chen and S. Recksiegel, Measuring B ±τ ± ν and B ±c → τ ± ν at the Z peak, Phys. Rev. D 77 (2008) 115018 [arXiv:0803.3517] [SPIRES].

    ADS  Google Scholar 

  148. A.G. Akeroyd and F. Mahmoudi, Constraints on charged Higgs bosons from D s ± → μ ± ν and D s ± → τ ± ν, JHEP 04 (2009) 121 [arXiv:0902.2393] [SPIRES].

    Article  ADS  Google Scholar 

  149. G. Barenboim, P. Paradisi, O. Vives, E. Lunghi and W. Porod, Light charged Higgs at the beginning of the LHC era, JHEP 04 (2008) 079 [arXiv:0712.3559] [SPIRES].

    Article  ADS  Google Scholar 

  150. R.S. Gupta and J.D. Wells, Next generation Higgs bosons: theory, constraints and discovery prospects at the Large Hadron Collider, Phys. Rev. D 81 (2010) 055012 [arXiv:0912.0267] [SPIRES].

    ADS  Google Scholar 

  151. Y.H. Ahn and C.-H. Chen, New charged Higgs effects on \( {{{{\Gamma_{{K_{e2}}}}}} \left/ {{{\Gamma_{{K_{\mu 2}}}}}} \right.} \) , \( {f_{{D_s}}} \) and \( \mathcal{B}\left( {{B^{+} } \to {\tau^{+} }\nu } \right) \) in the two-Higgs-doublet model, Phys. Lett. B 690 (2010) 57 [arXiv:1002.4216] [SPIRES].

    ADS  Google Scholar 

  152. A.S. Joshipura and B.P. Kodrani, Fermion number conservation and two Higgs doublet models without tree level flavour changing neutral currents, arXiv:1004.3637 [SPIRES].

  153. C.B. Braeuninger, A. Ibarra and C. Simonetto, Radiatively induced flavour violation in the general two-Higgs doublet model with Yukawa alignment, Phys. Lett. B 692 (2010) 189 [arXiv:1005.5706] [SPIRES].

    ADS  Google Scholar 

  154. A.J. Buras, M.V. Carlucci, S. Gori and G. Isidori, Higgs-mediated FCNCs: natural flavour conservation vs. minimal flavour violation, JHEP 10 (2010) 009 [arXiv:1005.5310] [SPIRES].

    Article  ADS  Google Scholar 

  155. A.J. Buras, P.H. Chankowski, J. Rosiek and L. Slawiano wska, ΔM(s)/ΔM(d), sin 2β and the angle γ in the presence of new ΔF = 2 operators, Nucl. Phys. B 619 (2001) 434 [hep-ph/0107048] [SPIRES].

    Article  ADS  Google Scholar 

  156. D. Becirevic, V. Giménez, G. Martinelli, M. Papinutto and J. Reyes, B-parameters of the complete set of matrix elements of δ(B) = 2 operators from the lattice, JHEP 04 (2002) 025 [hep-lat/0110091] [SPIRES].

    Article  ADS  Google Scholar 

  157. A.J. Buras, M. Jamin and P.H. Weisz, Leading and next-to-leading QCD corrections to ϵ parameter and \( {B_0} - {\bar{B}_0} \) mixing in the presence of a heavy top quark, Nucl. Phys. B 347 (1990) 491 [SPIRES].

    Article  ADS  Google Scholar 

  158. S. Herrlich and U. Nierste, The completeS| = 2 hamiltonian in the next-to-leading order, Nucl. Phys. B 476 (1996) 27 [hep-ph/9604330] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Jung.

Additional information

ArXiv ePrint: 1006.0470

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, M., Pich, A. & Tuzón, P. Charged-Higgs phenomenology in the aligned two-Higgs-doublet model. J. High Energ. Phys. 2010, 3 (2010). https://doi.org/10.1007/JHEP11(2010)003

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2010)003

Keywords

Navigation