Skip to main content
Log in

W+W, WZ and ZZ production in the POWHEG BOX

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We present an implementation of the vector boson pair production processes ZZ, W + W and WZ within the POWHEG framework, which is a method that allows the interfacing of NLO calculations to shower Monte Carlo programs. The implementation is built within the POWHEG BOX package. The Z/γ * interference, as well as singly resonant contributions, are properly included. We also considered interference terms arising from identical leptons in the final state. As a result, all contributions leading to the desired four-lepton system have been included in the calculation, with the sole exception of the interference between ZZ and W + W in the production of a pair of same-flavour, oppositely charged fermions and a pair of neutrinos, which we show to be fully negligible. Anomalous trilinear couplings can be also set in the program, and we give some examples of their effect at the LHC. We have made the relevant code available at the POWHEG BOX web site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D0 collaboration, V. Abazov et al., Measurement of the WW production cross section in \( p\overline p \) collisions at \( \sqrt {s} = 1.96\;TeV \), Phys. Rev. Lett. 94 (2005) 151801 [Erratum ibid. 100 (2008) 139901] [hep-ex/0410066] [INSPIRE].

    Article  ADS  Google Scholar 

  2. D0 collaboration, V. Abazov et al., Production of WZ events in \( p\overline p \) collisions at \( \sqrt {s} = 1.96\;TeV \) and limits on anomalous WWZ couplings, Phys. Rev. Lett. 95 (2005) 141802 [hep-ex/0504019] [INSPIRE].

    Article  ADS  Google Scholar 

  3. CDF collaboration, D. Acosta et al., Measurement of the W + W production cross section in \( p\overline p \) collisions at \( \sqrt {s} = 1.96\;TeV \) using dilepton events, Phys. Rev. Lett. 94 (2005) 211801 [hep-ex/0501050] [INSPIRE].

    Article  ADS  Google Scholar 

  4. D0 collaboration, V. Abazov et al., Measurement of the \( p\overline p \) → WZ + X cross-section at \( \sqrt {s} = 1.96\;TeV \) and limits on WWZ trilinear gauge couplings, Phys. Rev. D 76 (2007) 111104 [arXiv:0709.2917] [INSPIRE].

    ADS  Google Scholar 

  5. CDF collaboration, A. Abulencia et al., Observation of W Z production, Phys. Rev. Lett. 98 (2007) 161801 [hep-ex/0702027] [INSPIRE].

    Article  ADS  Google Scholar 

  6. CDF collaboration, T. Aaltonen et al., First measurement of ZZ production in \( p\overline p \) collisions at \( \sqrt {s} = 1.96\;TeV \), Phys. Rev. Lett. 100 (2008) 201801 [arXiv:0801.4806] [INSPIRE].

    Article  ADS  Google Scholar 

  7. CDF collaboration, T. Aaltonen et al., Measurement of the W + W production cross section and search for anomalous WW γ and WW Z couplings in \( p\overline p \) collisions at \( \sqrt {s} = 1.96\;TeV \), Phys. Rev. Lett. 104 (2010) 201801 [arXiv:0912.4500] [INSPIRE].

    Article  ADS  Google Scholar 

  8. D0 collaboration, V. Abazov et al., Measurement of the WW production cross section with dilepton final states in \( p\overline p \) collisions at \( \sqrt {s} = 1.96\;TeV \) and limits on anomalous trilinear gauge couplings, Phys. Rev. Lett. 103 (2009) 191801 [arXiv:0904.0673] [INSPIRE].

    Article  ADS  Google Scholar 

  9. D0 collaboration, V.M. Abazov et al., Measurement of the ZZ production cross section in \( p\overline p \) collisions at \( \sqrt {s} = 1.96\;TeV \), Phys. Rev. D 84 (2011) 011103 [arXiv:1104.3078] [INSPIRE].

    ADS  Google Scholar 

  10. ATLAS collaboration, G. Aad et al., Measurement of the WW cross section in \( \sqrt {s} = 7\;TeV \) pp collisions with ATLAS, arXiv:1104.5225 [INSPIRE].

  11. CMS collaboration, S. Chatrchyan et al., Measurement of W + W production and search for the Higgs boson in pp collisions at \( \sqrt {s} = TeV \), Phys. Lett. B 699 (2011) 25 [arXiv:1102.5429] [INSPIRE].

    ADS  Google Scholar 

  12. L.J. Dixon, Z. Kunszt and A. Signer, Helicity amplitudes for O(αs ) production of W + W , W ± Z, ZZ, W ± γ, or Zγ pairs at hadron colliders, Nucl. Phys. B 531 (1998) 3 [hep-ph/9803250] [INSPIRE].

    Article  ADS  Google Scholar 

  13. U. Baur, T. Han and J. Ohnemus, QCD corrections and nonstandard three vector boson couplings in W + W production at hadron colliders, Phys. Rev. D 53 (1996) 1098 [hep-ph/9507336] [INSPIRE].

    ADS  Google Scholar 

  14. J.M. Campbell and R. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [INSPIRE].

    ADS  Google Scholar 

  15. J.M. Campbell, R. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP 07 (2011) 018 [arXiv:1105.0020] [INSPIRE].

    Article  ADS  Google Scholar 

  16. S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].

    Article  ADS  Google Scholar 

  17. P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].

    Article  ADS  Google Scholar 

  18. S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].

    Article  ADS  Google Scholar 

  19. P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for Z pair hadroproduction, JHEP 08 (2006) 077 [hep-ph/0606275] [INSPIRE].

    Article  ADS  Google Scholar 

  20. K. Hamilton, A positive-weight next-to-leading order simulation of weak boson pair production, JHEP 01 (2011) 009 [arXiv:1009.5391] [INSPIRE].

    Article  ADS  Google Scholar 

  21. S. Hoche, F. Krauss, M. Schonherr and F. Siegert, Automating the POWHEG method in Sherpa, JHEP 04 (2011) 024 [arXiv:1008.5399] [INSPIRE].

    Article  ADS  Google Scholar 

  22. T. Binoth, N. Kauer and P. Mertsch, Gluon-induced QCD corrections to \( pp \to ZZ \to l\overline l l\prime \overline l \prime \), arXiv:0807.0024 [INSPIRE].

  23. T. Binoth, M. Ciccolini, N. Kauer and M. Krämer, Gluon-induced WW background to Higgs boson searches at the LHC, JHEP 03 (2005) 065 [hep-ph/0503094] [INSPIRE].

    Article  ADS  Google Scholar 

  24. T. Binoth, M. Ciccolini, N. Kauer and M. Krämer, Gluon-induced W-boson pair production at the LHC, JHEP 12 (2006) 046 [hep-ph/0611170] [INSPIRE].

    Article  ADS  Google Scholar 

  25. S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].

    Article  ADS  Google Scholar 

  26. U. Baur and D. Zeppenfeld, Finite width effects and gauge invariance in radiative W productions and decay, Phys. Rev. Lett. 75 (1995) 1002 [hep-ph/9503344] [INSPIRE].

    Article  ADS  Google Scholar 

  27. J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].

    Article  ADS  Google Scholar 

  28. G. Ossola, C.G. Papadopoulos and R. Pittau, On the rational terms of the one-loop amplitudes, JHEP 05 (2008) 004 [arXiv:0802.1876] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. S. Dittmaier and . Kramer, Michael, Electroweak radiative corrections to W boson production at hadron colliders, Phys. Rev. D 65 (2002) 073007 [hep-ph/0109062] [INSPIRE].

  30. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Google Scholar 

  31. A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  Google Scholar 

  32. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  33. G. Corcella et al., HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [INSPIRE].

    Article  ADS  Google Scholar 

  34. M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].

    Article  ADS  Google Scholar 

  35. T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  36. J. Alwall et al., A standard format for Les Houches event files, Comput. Phys. Commun. 176 (2007) 300 [hep-ph/0609017] [INSPIRE].

    Article  ADS  Google Scholar 

  37. H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].

    ADS  Google Scholar 

  38. R.D. Ball et al., Impact of heavy quark masses on parton distributions and LHC phenomenology, Nucl. Phys. B 849 (2011) 296 [arXiv:1101.1300] [INSPIRE].

    Article  ADS  Google Scholar 

  39. M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  Google Scholar 

  40. M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].

    ADS  Google Scholar 

  41. S. Alioli, P. Nason, C. Oleari and E. Re, NLO Higgs boson production via gluon fusion matched with shower in POWHEG, JHEP 04 (2009) 002 [arXiv:0812.0578] [INSPIRE].

    Article  ADS  Google Scholar 

  42. P. Nason, Recent developments in POWHEG, PoS(RADCOR2009) 018 [arXiv:1001.2747] [INSPIRE].

  43. D0 collaboration, V. Abazov et al., Measurement of trilinear gauge boson couplings from WW + WZ → lνjj events in \( p\overline p \) collisions at \( \sqrt {s} = 1.96\;TeV \), Phys. Rev. D 80 (2009) 053012 [arXiv:0907.4398] [INSPIRE].

    ADS  Google Scholar 

  44. ALEPH, DELPHI, L3, OPAL, LEP Electroweak Working Group collaboration, J. Alcaraz et al., A Combination of preliminary electroweak measurements and constraints on the standard model, hep-ex/0612034 [INSPIRE].

  45. K. Hagiwara, S. Ishihara, R. Szalapski and D. Zeppenfeld, Low-energy effects of new interactions in the electroweak boson sector, Phys. Rev. D 48 (1993) 2182 [INSPIRE].

    ADS  Google Scholar 

  46. F. Petriello, Production of the Higgs and other EW Objects at the LHC, talk given at Physics at the LHC, June 6–11, Perugia, Italy (2011).

  47. K. Hagiwara, R. Peccei, D. Zeppenfeld and K. Hikasa, Probing the weak boson sector in e + e  → W + W , Nucl. Phys. B 282 (1987) 253 [INSPIRE].

    Article  ADS  Google Scholar 

  48. U. Baur and D. Zeppenfeld, Unitarity constraints on the electroweak three vector boson vertices, Phys. Lett. B 201 (1988) 383 [INSPIRE].

    ADS  Google Scholar 

  49. U. Baur and D. Zeppenfeld, Probing the WW γ vertex at future hadron colliders, Nucl. Phys. B 308 (1988) 127 [INSPIRE].

    Article  ADS  Google Scholar 

  50. ALEPH, DELPHI, L3, OPAL, LEP Electroweak Working Group, SLD Heavy Flavor Group collaboration, A combination of preliminary electroweak measurements and constraints on the standard model, hep-ex/0212036 [INSPIRE].

  51. H. Aihara et al., Anomalous gauge boson interactions, hep-ph/9503425 [INSPIRE].

  52. L. D’Errico and P. Richardson, Next-to-Leading-Order Monte Carlo simulation of diphoton production in hadronic collisions, arXiv:1106.3939 [INSPIRE].

  53. S. Alioli, P. Nason, C. Oleari and E. Re, NLO vector-boson production matched with shower in POWHEG, JHEP 07 (2008) 060 [arXiv:0805.4802] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Nason.

Additional information

ArXiv ePrint: 1107.5051

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melia, T., Nason, P., Röntsch, R. et al. W+W, WZ and ZZ production in the POWHEG BOX. J. High Energ. Phys. 2011, 78 (2011). https://doi.org/10.1007/JHEP11(2011)078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2011)078

Keywords

Navigation