Skip to main content
Log in

Double field theory and \( \mathcal{N} = {4} \) gauged supergravity

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Double Field Theory describes the NS-NS sector of string theory and lives on a doubled spacetime. The theory has a local gauge symmetry generated by a generalization of the Lie derivative for doubled coordinates. For the action to be invariant under this symmetry, a differential constraint is imposed on the fields and gauge parameters, reducing their possible dependence in the doubled coordinates. We perform a Scherk-Schwarz reduction of Double Field Theory, yielding electric gaugings of half-maximal supergravity in four dimensions when integrability conditions are assumed. The residual symmetries of the compactified theory are mapped with the symmetries of the effective theory and the differential constraints of Double Field Theory are compared with the algebraic conditions on the embedding tensor. It is found that only a weaker form of the differential constraint has to be imposed on background fields to ensure the local gauge symmetry of the reduced action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. B. Zwiebach, Double field theory, T-duality and Courant brackets, arXiv:1109.1782 [INSPIRE].

  3. C. Hull and B. Zwiebach, The gauge algebra of double field theory and Courant brackets, JHEP 09 (2009) 090 [arXiv:0908.1792] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. M. Gualtieri, Generalized complex geometry, math/0401221 [INSPIRE].

  5. O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. M. Graña, R. Minasian, M. Petrini and A. Tomasiello, Supersymmetric backgrounds from generalized Calabi-Yau manifolds, JHEP 08 (2004) 046 [hep-th/0406137] [INSPIRE].

    Article  ADS  Google Scholar 

  8. M. Graña, R. Minasian, M. Petrini and A. Tomasiello, Generalized structures of N = 1 vacua, JHEP 11 (2005) 020 [hep-th/0505212] [INSPIRE].

    Article  ADS  Google Scholar 

  9. O. Hohm and S.K. Kwak, Double field theory formulation of heterotic strings, JHEP 06 (2011) 096 [arXiv:1103.2136] [INSPIRE].

    Article  ADS  Google Scholar 

  10. O. Hohm, S.K. Kwak and B. Zwiebach, Unification of type II strings and T-duality, Phys. Rev. Lett. 107 (2011) 171603 [arXiv:1106.5452] [INSPIRE].

    Article  ADS  Google Scholar 

  11. O. Hohm, S.K. Kwak and B. Zwiebach, Double field theory of type II strings, JHEP 09 (2011) 013 [arXiv:1107.0008] [INSPIRE].

    Article  ADS  Google Scholar 

  12. O. Hohm and S.K. Kwak, Massive type II in double field theory, JHEP 11 (2011) 086 [arXiv:1108.4937] [INSPIRE].

    Article  ADS  Google Scholar 

  13. I. Jeon, K. Lee and J.-H. Park, Differential geometry with a projection: application to double field theory, JHEP 04 (2011) 014 [arXiv:1011.1324] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. I. Jeon, K. Lee and J.-H. Park, Stringy differential geometry, beyond Riemann, Phys. Rev. D 84 (2011) 044022 [arXiv:1105.6294] [INSPIRE].

    ADS  Google Scholar 

  15. I. Jeon, K. Lee and J.-H. Park, Incorporation of fermions into double field theory, JHEP 11 (2011) 025 [arXiv:1109.2035] [INSPIRE].

    Article  ADS  Google Scholar 

  16. O. Hohm and S.K. Kwak, Frame-like geometry of double field theory, J. Phys. A 44 (2011) 085404 [arXiv:1011.4101] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  17. W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].

    ADS  Google Scholar 

  18. W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].

    ADS  Google Scholar 

  19. C. Hull, A geometry for non-geometric string backgrounds, JHEP 10 (2005) 065 [hep-th/0406102] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. C. Hull and R. Reid-Edwards, Non-geometric backgrounds, doubled geometry and generalised T-duality, JHEP 09 (2009) 014 [arXiv:0902.4032] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. G. Dall’Agata, N. Prezas, H. Samtleben and M. Trigiante, Gauged supergravities from twisted doubled tori and non-geometric string backgrounds, Nucl. Phys. B 799 (2008) 80 [arXiv:0712.1026] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. G. Dall’Agata and N. Prezas, Worldsheet theories for non-geometric string backgrounds, JHEP 08 (2008) 088 [arXiv:0806.2003] [INSPIRE].

  23. S.D. Avramis, J.-P. Derendinger and N. Prezas, Conformal chiral boson models on twisted doubled tori and non-geometric string vacua, Nucl. Phys. B 827 (2010) 281 [arXiv:0910.0431] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. J. Scherk and J.H. Schwarz, How to get masses from extra dimensions, Nucl. Phys. B 153 (1979) 61 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. N. Kaloper and R.C. Myers, The odd story of massive supergravity, JHEP 05 (1999) 010 [hep-th/9901045] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. A. Dabholkar and C. Hull, Duality twists, orbifolds and fluxes, JHEP 09 (2003) 054 [hep-th/0210209] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. M. Graña, R. Minasian, M. Petrini and D. Waldram, T-duality, generalized geometry and non-geometric backgrounds, JHEP 04 (2009) 075 [arXiv:0807.4527] [INSPIRE].

    Article  ADS  Google Scholar 

  28. H. Samtleben, Lectures on gauged supergravity and flux compactifications, Class. Quant. Grav. 25 (2008) 214002 [arXiv:0808.4076] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. B. de Wit, H. Samtleben and M. Trigiante, Magnetic charges in local field theory, JHEP 09 (2005) 016 [hep-th/0507289] [INSPIRE].

    Article  Google Scholar 

  30. J. De Rydt, T.T. Schmidt, M. Trigiante, A. Van Proeyen and M. Zagermann, Electric/magnetic duality for chiral gauge theories with anomaly cancellation, JHEP 12 (2008) 105 [arXiv:0808.2130] [INSPIRE].

    Article  ADS  Google Scholar 

  31. J. Schon and M. Weidner, Gauged N = 4 supergravities, JHEP 05 (2006) 034 [hep-th/0602024] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. G. Dibitetto, A. Guarino and D. Roest, How to halve maximal supergravity, JHEP 06 (2011) 030 [arXiv:1104.3587] [INSPIRE].

    Article  ADS  Google Scholar 

  33. A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as generalised geometry I: type II theories, JHEP 11 (2011) 091 [arXiv:1107.1733] [INSPIRE].

    Article  ADS  Google Scholar 

  34. G. Aldazabal, W. Baron, D. Marques and C. Núñez, The effective action of double field theory, JHEP 11 (2011) 052 [arXiv:1109.0290] [INSPIRE].

    Article  ADS  Google Scholar 

  35. M. Fukuma, T. Oota and H. Tanaka, Comments on T dualities of Ramond-Ramond potentials on tori, Prog. Theor. Phys. 103 (2000) 425 [hep-th/9907132] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. A. Rocen and P. West, E11, generalised space-time and IIA string theory: the RR sector, arXiv:1012.2744 [INSPIRE].

  37. E. Bergshoeff, R. Kallosh, T. Ortín, D. Roest and A. Van Proeyen, New formulations of D = 10 supersymmetry and D8 - O8 domain walls, Class. Quant. Grav. 18 (2001) 3359 [hep-th/0103233] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  38. J. Shelton, W. Taylor and B. Wecht, Nongeometric flux compactifications, JHEP 10 (2005) 085 [hep-th/0508133] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. J. Shelton, W. Taylor and B. Wecht, Generalized flux vacua, JHEP 02 (2007) 095 [hep-th/0607015] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. J.-P. Derendinger, P. Petropoulos and N. Prezas, Axionic symmetry gaugings in N = 4 supergravities and their higher-dimensional origin, Nucl. Phys. B 785 (2007) 115 [arXiv:0705.0008] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. G. Aldazabal, D. Marques, C. Núñez and J.A. Rosabal, On type IIB moduli stabilization and N =4, 8 supergravities, Nucl. Phys. B 849 (2011) 80 [arXiv:1101.5954] [INSPIRE].

    Article  ADS  Google Scholar 

  42. D. Andriot, M. Larfors, D. Lüst and P. Patalong, A ten-dimensional action for non-geometric fluxes, JHEP 09 (2011) 134 [arXiv:1106.4015] [INSPIRE].

    Article  ADS  Google Scholar 

  43. K. Peeters, A field-theory motivated approach to symbolic computer algebra, Comput. Phys. Commun. 176 (2007) 550 [cs/0608005] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Geissbühler.

Additional information

ArXiv ePrint: 1109.4280

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geissbühler, D. Double field theory and \( \mathcal{N} = {4} \) gauged supergravity. J. High Energ. Phys. 2011, 116 (2011). https://doi.org/10.1007/JHEP11(2011)116

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2011)116

Keywords

Navigation