Skip to main content
Log in

Numerical NLO QCD calculations

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We present an algorithm for the numerical calculation of one-loop QCD amplitudes. The algorithm consists of subtraction terms, approximating the soft, collinear and ultraviolet divergences of one-loop amplitudes and a method to deform the integration contour for the loop integration into the complex space. The algorithm is formulated at the amplitude level and does not rely on Feynman graphs. Therefore all required ingredients can be calculated efficiently using recurrence relations. The algorithm applies to massless partons as well as to massive partons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.B. Kilgore and W.T. Giele, Next-to-leading order gluonic three jet production at hadron colliders, Phys. Rev. D 55 (1997) 7183 [hep-ph/9610433] [SPIRES].

    ADS  Google Scholar 

  2. Z. Nagy, Three-jet cross sections in hadron hadron collisions at next-to-leading order, Phys. Rev. Lett. 88 (2002) 122003 [hep-ph/0110315] [SPIRES].

    Article  ADS  Google Scholar 

  3. Z. Nagy, Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev. D 68 (2003) 094002 [hep-ph/0307268] [SPIRES].

    ADS  Google Scholar 

  4. S. Dittmaier, P. Uwer and S. Weinzierl, NLO QCD corrections to t anti-t + jet production at hadron colliders, Phys. Rev. Lett. 98 (2007) 262002 [hep-ph/0703120] [SPIRES].

    Article  ADS  Google Scholar 

  5. S. Dittmaier, P. Uwer and S. Weinzierl, Hadronic top-quark pair production in association with a hard jet at next-to-leading order QCD: Phenomenological studies for the Tevatron and the LHC, Eur. Phys. J. C 59 (2009) 625 [arXiv:0810.0452] [SPIRES].

    Article  ADS  Google Scholar 

  6. K. Melnikov and M. Schulze, NLO QCD corrections to top quark pair production in association with one hard jet at hadron colliders, Nucl. Phys. B 840 (2010) 129 [arXiv:1004.3284] [SPIRES].

    Article  ADS  Google Scholar 

  7. W. Beenakker et al., NLO QCD corrections to t anti-tH production in hadron collisions. ((U)), Nucl. Phys. B 653 (2003) 151 [hep-ph/0211352] [SPIRES].

    Article  ADS  Google Scholar 

  8. S. Dawson, C. Jackson, L.H. Orr, L. Reina and D. Wackeroth, A ssociated Higgs production with top quarks at the Large Hadron Collider: NLO QCD corrections, Phys. Rev. D 68 (2003) 034022 [hep-ph/0305087] [SPIRES].

    ADS  Google Scholar 

  9. A. Lazopoulos, T. McElmurry, K. Melnikov and F. Petriello, Next-to-leading order QCD corrections to \( t\bar{t}Z \) production at the LHC, Phys. Lett. B 666 (2008) 62 [arXiv:0804.2220] [SPIRES].

    ADS  Google Scholar 

  10. D. Peng-Fei et al., QCD corrections to associated production of \( t\bar{t}\gamma \) at hadron colliders, arXiv:0907.1324 [SPIRES].

  11. B.W. Harris, E. Laenen, L. Phaf, Z. Sullivan and S. Weinzierl, The Fully differential single top quark cross-section in next to leading order QCD, Phys. Rev. D 66 (2002) 054024 [hep-ph/0207055] [SPIRES].

    ADS  Google Scholar 

  12. Q.-H. Cao and C.P. Yuan, Single top quark production and decay at next-to-leading order in hadron collision, Phys. Rev. D 71 (2005) 054022 [hep-ph/0408180] [SPIRES].

    ADS  Google Scholar 

  13. Q.-H. Cao, R. Schwienhorst and C.P. Yuan, Next-to-leading order corrections to single top quark production and decay at Tevatron. 1. s channel process, Phys. Rev. D 71 (2005) 054023 [hep-ph/0409040] [SPIRES].

    ADS  Google Scholar 

  14. Q.-H. Cao, R. Schwienhorst, J.A. Benitez, R. Brock and C.P. Yuan, Next-to-leading order corrections to single top quark production and decay at the Tevatron: 2. t channel process, Phys. Rev. D 72 (2005) 094027 [hep-ph/0504230] [SPIRES].

    ADS  Google Scholar 

  15. J.M. Campbell, R. Frederix, F. Maltoni and F. Tramontano, Next-to-Leading-Order Predictions for t-Channel Single-Top Production at Hadron Colliders, Phys. Rev. Lett. 102 (2009) 182003 [arXiv:0903.0005] [SPIRES].

    Article  ADS  Google Scholar 

  16. S. Heim, Q.-H. Cao, R. Schwienhorst and C.P. Yuan, Next-to-leading order QCD corrections to s-channel single top quark production and decay at the LHC, Phys. Rev. D 81 (2010) 034005 [arXiv:0911.0620] [SPIRES].

    ADS  Google Scholar 

  17. J.M. Campbell, K.R. Ellis and G. Zanderighi, Next-to-leading order predictions for WW + 1 jet distributions at the LHC, JHEP 12 (2007) 056 [arXiv:0710.1832] [SPIRES].

    Article  ADS  Google Scholar 

  18. S. Dittmaier, S. Kallweit and P. Uwer, NLO QCD corrections to WW+jet production at hadron colliders, Phys. Rev. Lett. 100 (2008) 062003 [arXiv:0710.1577] [SPIRES].

    Article  ADS  Google Scholar 

  19. S. Dittmaier, S. Kallweit and P. Uwer, NLO QCD corrections to \( {{{pp}} \left/ {{p\bar{p}}} \right.} \to WW + jet + X \) including leptonic W-boson decays, Nucl. Phys. B 826 (2010) 18 [arXiv:0908.4124] [SPIRES].

    Article  ADS  Google Scholar 

  20. T. Binoth, T. Gleisberg, S. Karg, N. Kauer and G. Sanguinetti, NLO QCD corrections to ZZ+jet production at hadron colliders, Phys. Lett. B 683 (2010) 154 [arXiv:0911.3181] [SPIRES].

    ADS  Google Scholar 

  21. T. Melia, K. Melnikov, R. Rontsch and G. Zanderighi, Next-to-leading order QCD predictions for W+W+jj production at the LHC, arXiv:1007.5313 [SPIRES].

  22. A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 1. quark-antiquark annihilation, JHEP 08 (2008) 108 [arXiv:0807.1248] [SPIRES].

    Article  ADS  Google Scholar 

  23. A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to \( pp \to t\bar{t}\;b\bar{b} + X \) at the LHC, Phys. Rev. Lett. 103 (2009) 012002 [arXiv:0905.0110] [SPIRES].

    Article  ADS  Google Scholar 

  24. A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 2. full hadronic results, JHEP 03 (2010) 021 [arXiv:1001.4006] [SPIRES].

    Article  ADS  Google Scholar 

  25. G. Bevilacqua, M. Czakon, C.G. Papadopoulos, R. Pittau and M. Worek, Assault on the NLO Wishlist: pp → tt bb, JHEP 09 (2009) 109 [arXiv:0907.4723] [SPIRES].

    Article  ADS  Google Scholar 

  26. G. Bevilacqua, M. Czakon, C.G. Papadopoulos and M. Worek, Dominant QCD Backgrounds in Higgs Boson Analyses at the LHC: A Study of \( pp \to t\bar{t} + 2 \) jets at Next-To-Leading Order, Phys. Rev. Lett. 104 (2010) 162002 [arXiv:1002.4009] [SPIRES].

    Article  ADS  Google Scholar 

  27. J.M. Campbell and R.K. Ellis, Radiative corrections to \( Z\;b\bar{b} \) production, Phys. Rev. D 62 (2000) 114012 [hep-ph/0006304] [SPIRES].

    ADS  Google Scholar 

  28. J.M. Campbell and R.K. Ellis, Next-to-leading order corrections to W + 2 jet and Z + 2 jet production at hadron colliders, Phys. Rev. D 65 (2002) 113007 [hep-ph/0202176] [SPIRES].

    ADS  Google Scholar 

  29. J.M. Campbell, R.K. Ellis and D.L. Rainwater, Next-to-leading order QCD predictions for W + 2jet and Z + 2jet production at the CERN LHC, Phys. Rev. D 68 (2003) 094021 [hep-ph/0308195] [SPIRES].

    ADS  Google Scholar 

  30. J.M. Campbell, R.K. Ellis, F. Maltoni and S. Willenbrock, Production of a Z boson and two jets with one heavy-quark tag, Phys. Rev. D 73 (2006) 054007 [hep-ph/0510362] [SPIRES].

    ADS  Google Scholar 

  31. J.M. Campbell, R.K. Ellis, F. Maltoni and S. Willenbrock, Production of a W boson and two jets with one b quark tag, Phys. Rev. D 75 (2007) 054015 [hep-ph/0611348] [SPIRES].

    ADS  Google Scholar 

  32. V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt and D. Zeppenfeld, H + 2 jets via gluon fusion, Phys. Rev. Lett. 87 (2001) 122001 [hep-ph/0105129] [SPIRES].

    Article  ADS  Google Scholar 

  33. V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt and D. Zeppenfeld, Gluon-fusion contributions to H + 2 jet production, Nucl. Phys. B 616 (2001) 367 [hep-ph/0108030] [SPIRES].

    Article  ADS  Google Scholar 

  34. J.M. Campbell, R.K. Ellis and G. Zanderighi, Next-to-leading order Higgs + 2 jet production via gluon fusion, JHEP 10 (2006) 028 [hep-ph/0608194] [SPIRES].

    Article  ADS  Google Scholar 

  35. R.K. Ellis, K. Melnikov and G. Zanderighi, Generalized unitarity at work: first NLO QCD results for hadronic W + 3jet production, JHEP 04 (2009) 077 [arXiv:0901.4101] [SPIRES].

    Article  ADS  Google Scholar 

  36. R.K. Ellis, K. Melnikov and G. Zanderighi, W + 3 jet production at the Tevatron, Phys. Rev. D 80 (2009) 094002 [arXiv:0906.1445] [SPIRES].

    ADS  Google Scholar 

  37. C.F. Berger et al., Precise Predictions for W + 3 Jet Production at Hadron Colliders, Phys. Rev. Lett. 102 (2009) 222001 [arXiv:0902.2760] [SPIRES].

    Article  ADS  Google Scholar 

  38. C.F. Berger et al., Next-to-Leading Order QCD Predictions for W + 3 Jet Distributions at Hadron Colliders, Phys. Rev. D 80 (2009) 074036 [arXiv:0907.1984] [SPIRES].

    ADS  Google Scholar 

  39. C.F. Berger et al., Next-to-Leading Order QCD Predictions for Z, γ + 3-Jet Distributions at the Tevatron, Phys. Rev. D 82 (2010) 074002 [arXiv:1004.1659] [SPIRES].

    ADS  Google Scholar 

  40. C.F. Berger et al., Precise Predictions for W + 4 Jet Production at the Large Hadron Collider, arXiv:1009.2338 [SPIRES].

  41. A. Lazopoulos, K. Melnikov and F. Petriello, QCD corrections to tri-boson production, Phys. Rev. D 76 (2007) 014001 [hep-ph/0703273] [SPIRES].

    ADS  Google Scholar 

  42. T. Binoth, G. Ossola, C.G. Papadopoulos and R. Pittau, NLO QCD corrections to tri-boson production, JHEP 06 (2008) 082 [arXiv:0804.0350] [SPIRES].

    Article  ADS  Google Scholar 

  43. T. Binoth et al., Next-to-leading order QCD corrections to \( pp \to b\bar{b}b\bar{b} + X \) at the LHC: the quark induced case, Phys. Lett. B 685 (2010) 293 [arXiv:0910.4379] [SPIRES].

    ADS  Google Scholar 

  44. B. Jäger, C. Oleari and D. Zeppenfeld, Next-to-leading order QCD corrections to W + W production via vector-boson fusion, JHEP 07 (2006) 015 [hep-ph/0603177] [SPIRES].

    Article  Google Scholar 

  45. B. Jäger, C. Oleari and D. Zeppenfeld, Next-to-leading order QCD corrections to Z boson pair production via vector-boson fusion, Phys. Rev. D 73 (2006) 113006 [hep-ph/0604200] [SPIRES].

    ADS  Google Scholar 

  46. G. Bozzi, B. Jäger, C. Oleari and D. Zeppenfeld, Next-to-leading order QCD corrections to W + Z and W Z production via vector-boson fusion, Phys. Rev. D 75 (2007) 073004 [hep-ph/0701105] [SPIRES].

    ADS  Google Scholar 

  47. V. Hankele and D. Zeppenfeld, QCD corrections to hadronic WWZ production with leptonic decays, Phys. Lett. B 661 (2008) 103 [arXiv:0712.3544] [SPIRES].

    ADS  Google Scholar 

  48. F. Campanario, V. Hankele, C. Oleari, S. Prestel and D. Zeppenfeld, QCD corrections to charged triple vector boson production with leptonic decay, Phys. Rev. D 78 (2008) 094012 [arXiv:0809.0790] [SPIRES].

    ADS  Google Scholar 

  49. B. Jäger, C. Oleari and D. Zeppenfeld, Next-to-leading order QCD corrections to W + W + jj and W W jj production via weak-boson fusion, Phys. Rev. D 80 (2009) 034022 [arXiv:0907.0580] [SPIRES].

    ADS  Google Scholar 

  50. S. Catani and M.H. Seymour, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [hep-ph/9605323] [SPIRES].

    Article  ADS  Google Scholar 

  51. S. Dittmaier, A general approach to photon radiation off fermions, Nucl. Phys. B 565 (2000) 69 [hep-ph/9904440] [SPIRES].

    Article  ADS  Google Scholar 

  52. L. Phaf and S. Weinzierl, Dipole formalism with heavy fermions, JHEP 04 (2001) 006 [hep-ph/0102207] [SPIRES].

    Article  ADS  Google Scholar 

  53. S. Catani, S. Dittmaier, M.H. Seymour and Z. Trócsányi, The dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys. B 627 (2002) 189 [hep-ph/0201036] [SPIRES].

    Article  ADS  Google Scholar 

  54. S. Weinzierl, Automated computation of spin-and colour-correlated Born matrix elements, Eur. Phys. J. C 45 (2006) 745 [hep-ph/0510157] [SPIRES].

    Article  ADS  Google Scholar 

  55. T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J. C 53 (2008) 501 [arXiv:0709.2881] [SPIRES].

    Article  ADS  Google Scholar 

  56. M.H. Seymour and C. Tevlin, TeVJet: A general framework for the calculation of jet observables in NLO QCD, arXiv:0803.2231 [SPIRES].

  57. K. Hasegawa, S. Moch and P. Uwer, AutoDipole – Automated generation of dipole subtraction terms -, Comput. Phys. Commun. 181 (2010) 1802 [arXiv:0911.4371] [SPIRES].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. R. Frederix, T. Gehrmann and N. Greiner, Automation of the Dipole Subtraction Method in MadGraph/MadEvent, JHEP 09 (2008) 122 [arXiv:0808.2128] [SPIRES].

    Article  ADS  Google Scholar 

  59. M. Czakon, C.G. Papadopoulos and M. Worek, Polarizing the Dipoles, JHEP 08 (2009) 085 [arXiv:0905.0883] [SPIRES].

    Article  ADS  Google Scholar 

  60. F.A. Berends and W.T. Giele, Recursive Calculations for Processes with n Gluons, Nucl. Phys. B 306 (1988) 759 [SPIRES].

    Article  ADS  Google Scholar 

  61. D.A. Kosower, Light Cone Recurrence Relations for QCD Amplitudes, Nucl. Phys. B 335 (1990) 23 [SPIRES].

    Article  ADS  Google Scholar 

  62. F. Caravaglios and M. Moretti, An algorithm to compute Born scattering amplitudes without Feynman graphs, Phys. Lett. B 358 (1995) 332 [hep-ph/9507237] [SPIRES].

    ADS  Google Scholar 

  63. A. Kanaki and C.G. Papadopoulos, HELAC: A package to compute electroweak helicity amplitudes, Comput. Phys. Commun. 132 (2000) 306 [hep-ph/0002082] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  64. M. Moretti, T. Ohl and J. Reuter, O’Mega: An optimizing matrix element generator, hep-ph/0102195 [SPIRES].

  65. M. Dinsdale, M. Ternick and S. Weinzierl, A comparison of efficient methods for the computation of Born gluon amplitudes, JHEP 03 (2006) 056 [hep-ph/0602204] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  66. C. Duhr, S. Hoeche and F. Maltoni, Color-dressed recursive relations for multi-parton amplitudes, JHEP 08 (2006) 062 [hep-ph/0607057] [SPIRES].

    Article  ADS  Google Scholar 

  67. S. Dittmaier, Separation of soft and collinear singularities from one-loop N-point integrals, Nucl. Phys. B 675 (2003) 447 [hep-ph/0308246] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  68. A. Denner and S. Dittmaier, Reduction of one-loop tensor 5-point integrals, Nucl. Phys. B 658 (2003) 175 [hep-ph/0212259] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  69. A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B 734 (2006) 62 [hep-ph/0509141] [SPIRES].

    Article  ADS  Google Scholar 

  70. A. Denner and S. Dittmaier, Scalar one-loop 4-point integrals, arXiv:1005.2076 [SPIRES].

  71. W.T. Giele and E.W.N. Glover, A calculational formalism for one-loop integrals, JHEP 04 (2004) 029 [hep-ph/0402152] [SPIRES].

    Article  ADS  Google Scholar 

  72. A. van Hameren, J. Vollinga and S. Weinzierl, Automated computation of one-loop integrals in massless theories, Eur. Phys. J. C 41 (2005) 361 [hep-ph/0502165] [SPIRES].

    Article  ADS  Google Scholar 

  73. R.K. Ellis, W.T. Giele and G. Zanderighi, Semi-numerical evaluation of one-loop corrections, Phys. Rev. D 73 (2006) 014027 [hep-ph/0508308] [SPIRES].

    ADS  Google Scholar 

  74. F. del Aguila and R. Pittau, Recursive numerical calculus of one-loop tensor integrals, JHEP 07 (2004) 017 [hep-ph/0404120] [SPIRES].

    Article  Google Scholar 

  75. R. Pittau, Formulae for a numerical computation of one-loop tensor integrals, hep-ph/0406105 [SPIRES].

  76. T. Binoth, G. Heinrich and N. Kauer, A numerical evaluation of the scalar hexagon integral in the physical region, Nucl. Phys. B 654 (2003) 277 [hep-ph/0210023] [SPIRES].

    Article  ADS  Google Scholar 

  77. T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon and C. Schubert, An algebraic/numerical formalism for one-loop multi-leg amplitudes, JHEP 10 (2005) 015 [hep-ph/0504267] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  78. Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [SPIRES].

    Article  ADS  Google Scholar 

  79. C.F. Berger et al., An Automated Implementation of On-Shell Methods for One-Loop Amplitudes, Phys. Rev. D 78 (2008) 036003 [arXiv:0803.4180] [SPIRES].

    ADS  Google Scholar 

  80. D. Forde, Direct extraction of one-loop integral coefficients, Phys. Rev. D 75 (2007) 125019 [arXiv:0704.1835] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  81. G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  82. G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [SPIRES].

    Article  ADS  Google Scholar 

  83. G. Ossola, C.G. Papadopoulos and R. Pittau, On the Rational Terms of the one-loop amplitudes, JHEP 05 (2008) 004 [arXiv:0802.1876] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  84. P. Mastrolia, G. Ossola, C.G. Papadopoulos and R. Pittau, Optimizing the Reduction of One-Loop Amplitudes, JHEP 06 (2008) 030 [arXiv:0803.3964] [SPIRES].

    Article  ADS  Google Scholar 

  85. P. Draggiotis, M.V. Garzelli, C.G. Papadopoulos and R. Pittau, Feynman Rules for the Rational Part of the QCD 1-loop amplitudes, JHEP 04 (2009) 072 [arXiv:0903.0356] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  86. M.V. Garzelli, I. Malamos and R. Pittau, Feynman rules for the rational part of the Electroweak 1-loop amplitudes, JHEP 01 (2010) 040 [arXiv:0910.3130] [SPIRES].

    Article  ADS  Google Scholar 

  87. W.B. Kilgore, One-loop Integral Coefficients from Generalized Unitarity, arXiv:0711.5015 [SPIRES].

  88. C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, D-dimensional unitarity cut method, Phys. Lett. B 645 (2007) 213 [hep-ph/0609191] [SPIRES].

    ADS  Google Scholar 

  89. C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, Unitarity cuts and reduction to master integrals in d dimensions for one-loop amplitudes, JHEP 03 (2007) 111 [hep-ph/0612277] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  90. R.K. Ellis, W.T. Giele and Z. Kunszt, A Numerical Unitarity Formalism for Evaluating One-Loop Amplitudes, JHEP 03 (2008) 003 [arXiv:0708.2398] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  91. W.T. Giele, Z. Kunszt and K. Melnikov, Full one-loop amplitudes from tree amplitudes, JHEP 04 (2008) 049 [arXiv:0801.2237] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  92. R.K. Ellis, W.T. Giele, Z. Kunszt and K. Melnikov, Masses, fermions and generalized D-dimensional unitarity, Nucl. Phys. B 822 (2009) 270 [arXiv:0806.3467] [SPIRES].

    Article  ADS  Google Scholar 

  93. D.E. Soper, QCD calculations by numerical integration, Phys. Rev. Lett. 81 (1998) 2638 [hep-ph/9804454] [SPIRES].

    Article  ADS  Google Scholar 

  94. D.E. Soper, Techniques for QCD calculations by numerical integration, Phys. Rev. D 62 (2000) 014009 [hep-ph/9910292] [SPIRES].

    ADS  Google Scholar 

  95. D.E. Soper, Choosing integration points for QCD calculations by numerical integration, Phys. Rev. D 64 (2001) 034018 [hep-ph/0103262] [SPIRES].

    ADS  Google Scholar 

  96. M. Krämer, 1 and D.E. Soper, Next-to-leading order numerical calculations in Coulomb gauge, Phys. Rev. D 66 (2002) 054017 [hep-ph/0204113] [SPIRES].

    ADS  Google Scholar 

  97. Z. Nagy and D.E. Soper, General subtraction method for numerical calculation of one-loop QCD matrix elements, JHEP 09 (2003) 055 [hep-ph/0308127] [SPIRES].

    Article  ADS  Google Scholar 

  98. Z. Nagy and D.E. Soper, Numerical integration of one-loop Feynman diagrams for N-photon amplitudes, Phys. Rev. D 74 (2006) 093006 [hep-ph/0610028] [SPIRES].

    ADS  Google Scholar 

  99. W. Gong, Z. Nagy and D.E. Soper, Direct numerical integration of one-loop Feynman diagrams for N-photon amplitudes, Phys. Rev. D 79 (2009) 033005 [arXiv:0812.3686] [SPIRES].

    ADS  Google Scholar 

  100. G. Passarino, An Approach Toward the Numerical Evaluation of Multi-Loop Feynman Diagrams, Nucl. Phys. B 619 (2001) 257 [hep-ph/0108252] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  101. A. Ferroglia, M. Passera, G. Passarino and S. Uccirati, All-purpose numerical evaluation of one-loop multi-leg Feynman diagrams, Nucl. Phys. B 650 (2003) 162 [hep-ph/0209219] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  102. C. Anastasiou, S. Beerli and A. Daleo, Evaluating multi-loop Feynman diagrams with infrared and threshold singularities numerically, JHEP 05 (2007) 071 [hep-ph/0703282] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  103. T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett. 102 (2009) 162001 [arXiv:0901.0722] [SPIRES].

    Article  ADS  Google Scholar 

  104. E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP 03 (2009) 079 [arXiv:0901.1091] [SPIRES].

    Article  ADS  Google Scholar 

  105. M. Assadsolimani, S. Becker and S. Weinzierl, A simple formula for the infrared singular part of the integrand of one-loop QCD amplitudes, Phys. Rev. D 81 (2010) 094002 [arXiv:0912.1680] [SPIRES].

    ADS  Google Scholar 

  106. M. Assadsolimani, S. Becker, C. Reuschle and S. Weinzierl, Infrared singularities in one-loop amplitudes, Nucl. Phys. Proc. Suppl. 205-206 (2010) 224 [arXiv:1006.4609] [SPIRES].

    Article  Google Scholar 

  107. P. Cvitanovic, P.G. Lauwers and P.N. Scharbach, Gauge Invariance Structure Of Quantum Chromodynamics, Nucl. Phys. B 186 (1981) 165 [SPIRES].

    Article  ADS  Google Scholar 

  108. F.A. Berends and W. Giele, The Six Gluon Process as an Example of Weyl-Van Der Waerden Spinor Calculus, Nucl. Phys. B 294 (1987) 700 [SPIRES].

    Article  ADS  Google Scholar 

  109. M.L. Mangano, S.J. Parke and Z. Xu, Duality and Multi-Gluon Scattering, Nucl. Phys. B 298 (1988) 653 [SPIRES].

    Article  ADS  Google Scholar 

  110. D. Kosower, B.-H. Lee and V.P. Nair, Multi Gluon Scattering: A String Based Calculation, Phys. Lett. B 201 (1988) 85 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  111. Z. Bern and D.A. Kosower, Color decomposition of one loop amplitudes in gauge theories, Nucl. Phys. B 362 (1991) 389 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  112. G. ’t Hooft, Planar Diagram Theory for Strong Interactions, Nucl. Phys. B 72 (1974) 461 [SPIRES].

    Article  ADS  Google Scholar 

  113. F. Maltoni, K. Paul, T. Stelzer and S. Willenbrock, Color-flow decomposition of QCD amplitudes, Phys. Rev. D 67 (2003) 014026 [hep-ph/0209271] [SPIRES].

    ADS  Google Scholar 

  114. Z. Bern, L.J. Dixon and D.A. Kosower, One loop corrections to two quark three gluon amplitudes, Nucl. Phys. B 437 (1995) 259 [hep-ph/9409393] [SPIRES].

    Article  ADS  Google Scholar 

  115. T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys. 3 (1962) 650 [SPIRES].

    Article  MATH  ADS  Google Scholar 

  116. R.K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP 02 (2008) 002 [arXiv:0712.1851] [SPIRES].

    Article  ADS  Google Scholar 

  117. N.I. Usyukina and A.I. Davydychev, An Approach to the evaluation of three and four point ladder diagrams, Phys. Lett. B 298 (1993) 363 [SPIRES].

    ADS  Google Scholar 

  118. H.J. Lu and C.A. Perez, Massless one loop scalar three point integral and associated Clausen, Glaisher and L functions, report SLAC-PUB-5809 [SPIRES].

  119. Z. Bern, L.J. Dixon, D.A. Kosower and S. Weinzierl, One-loop amplitudes for \( {e^{+} }{e^{-} } \to \bar{q}q\bar{Q}Q \), Nucl. Phys. B 489 (1997) 3 [hep-ph/9610370] [SPIRES].

    Article  ADS  Google Scholar 

  120. G.P. Lepage, A New Algorithm for Adaptive Multidimensional Integration, J. Comput. Phys. 27 (1978) 192 [SPIRES].

    Article  MATH  ADS  Google Scholar 

  121. G. P. Lepage, Vegas: An Adaptive Multidimensional Integration Program, report CLNS-80/447 [SPIRES].

  122. T. Binoth, J.P. Guillet and G. Heinrich, Reduction formalism for dimensionally regulated one-loop N-point integrals, Nucl. Phys. B 572 (2000) 361 [hep-ph/9911342] [SPIRES].

    Article  ADS  Google Scholar 

  123. J. Fleischer, F. Jegerlehner and O.V. Tarasov, Algebraic reduction of one-loop Feynman graph amplitudes, Nucl. Phys. B 566 (2000) 423 [hep-ph/9907327] [SPIRES].

    Article  MathSciNet  Google Scholar 

  124. G. Duplancic and B. Nizic, Reduction method for dimensionally regulated one-loop N-point Feynman integrals, Eur. Phys. J. C 35 (2004) 105 [hep-ph/0303184] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Becker.

Additional information

ArXiv ePrint : 1010.4187

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, S., Reuschle, C. & Weinzierl, S. Numerical NLO QCD calculations. J. High Energ. Phys. 2010, 13 (2010). https://doi.org/10.1007/JHEP12(2010)013

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2010)013

Keywords

Navigation