Skip to main content
Log in

Fermion masses in emergent electroweak symmetry breaking

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider the generation of fermion masses in an emergent model of electroweak symmetry breaking with composite W,Z gauge bosons. A universal bulk fermion profile in a warped extra dimension is used for all fermion flavors. Electroweak symmetry is broken at the UV (or Planck) scale where boundary mass terms are added to generate the fermion flavor structure. This leads to flavor-dependent nonuniversality in the gauge couplings. The effects are suppressed for the light fermion generations but are enhanced for the top quark where the \( Zt\bar{t} \) and \( Wt\bar{b} \) couplings can deviate at the 10–20% level in the minimal setup. By the AdS/CFT correspondence our model implies that electroweak symmetry is not a fundamental gauge symmetry. Instead the Standard Model with massive fermions and W,Z gauge bosons is an effective chiral Lagrangian for some underlying confining strong dynamics at the TeV scale, where mass is generated without a Higgs mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Cui, T. Gherghetta and J.D. Wells, Emergent Electroweak Symmetry Breaking with Composite W, Z Bosons, JHEP 11 (2009) 080 [arXiv:0907.0906] [SPIRES].

    Article  ADS  Google Scholar 

  2. J.D. Bjorken, Alternatives To Gauge Theories, proceedings of the First Ben Lee Memorial Int. Conf. on Parity Nonconservation, Batavia U.S.A., Oct 20-22, 1977.

  3. P.Q. Hung and J.J. Sakurai, Gamma W0 Mixing as an Alternative to Unified Weak Electromagnetic Gauge Theories, Nucl. Phys. B 143 (1978) 81 [Erratum ibid B 148 (1979) 538] [SPIRES].

    Article  ADS  Google Scholar 

  4. L.F. Abbott and E. Farhi, Are the Weak Interactions Strong?, Phys. Lett. B 101 (1981) 69 [SPIRES].

    ADS  Google Scholar 

  5. H. Fritzsch, D. Schildknecht and R. Kogerler, Weak Current Algebra, Composite W Bosons and Universality of the Weak Interactions, Phys. Lett. B 114 (1982) 157 [SPIRES].

    ADS  Google Scholar 

  6. T. Kugo, S. Uehara and T. Yanagida, Weak Bosons As Composite Gauge Fields Of Hidden Symmetries, Phys. Lett. B 147 (1984) 321 [SPIRES].

    ADS  Google Scholar 

  7. S. Uehara and T. Yanagida, Dynamical Weak Gauge Bosons, Phys. Lett. B 165 (1985) 94 [SPIRES].

    ADS  Google Scholar 

  8. M. Bando, T. Kugo and K. Yamawaki, Composite Gauge Bosons and ’Low-Energy Theorems’ of Hidden Local Symmetries, Prog. Theor. Phys. 73 (1985) 1541 [SPIRES].

    Article  ADS  Google Scholar 

  9. M. Suzuki, Dynamical Composite Models of Electroweak Bosons, Phys. Rev. D 37 (1988) 210 [SPIRES].

    ADS  Google Scholar 

  10. A.G. Cohen, H. Georgi and E.H. Simmons, A comment on Suzuki’s model for composite vector mesons, Phys. Rev. D 38 (1988) 405 [SPIRES].

    ADS  Google Scholar 

  11. M. Bando, T. Kugo and K. Yamawaki, Nonlinear Realization and Hidden Local Symmetries, Phys. Rept. 164 (1988) 217 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  12. M. Suzuki, Approximate gauge symmetry of composite vector bosons, Phys. Rev. D 82 (2010) 045026 [arXiv:1006.1319] [SPIRES].

    ADS  Google Scholar 

  13. S. Weinberg, Implications of Dynamical Symmetry Breaking, Phys. Rev. D 13 (1976) 974 [SPIRES].

    ADS  Google Scholar 

  14. S. Weinberg, Implications of Dynamical Symmetry Breaking: An Addendum, Phys. Rev. D 19 (1979) 1277 [SPIRES].

    ADS  Google Scholar 

  15. L. Susskind, Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory, Phys. Rev. D 20 (1979) 2619 [SPIRES].

    ADS  Google Scholar 

  16. C. Csáki, C. Grojean, L. Pilo and J. Terning, Towards a realistic model of Higgsless electroweak symmetry breaking, Phys. Rev. Lett. 92 (2004) 101802 [hep-ph/0308038] [SPIRES].

    Article  ADS  Google Scholar 

  17. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].

    Article  ADS  Google Scholar 

  18. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [SPIRES].

    Article  ADS  Google Scholar 

  20. H. Davoudiasl, J.L. Hewett, B. Lillie and T.G. Rizzo, Warped Higgsless models with IR brane kinetic terms, JHEP 05 (2004) 015 [hep-ph/0403300] [SPIRES].

    Article  ADS  Google Scholar 

  21. M.S. Carena, T.M.P. Tait and C.E.M. Wagner, Branes and orbifolds are opaque, Acta Phys. Polon. B 33 (2002) 2355 [hep-ph/0207056] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  22. M.S. Carena, E. Ponton, T.M.P. Tait and C.E.M. Wagner, Opaque branes in warped backgrounds, Phys. Rev. D 67 (2003) 096006 [hep-ph/0212307] [SPIRES].

    ADS  Google Scholar 

  23. H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Brane localized kinetic terms in the Randall-Sundrum model, Phys. Rev. D 68 (2003) 045002 [hep-ph/0212279] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  24. F. del Aguila, M. Pérez-Victoria and J. Santiago, Bulk fields with general brane kinetic terms, JHEP 02 (2003) 051 [hep-th/0302023] [SPIRES].

    Article  Google Scholar 

  25. M.S. Carena, A. Delgado, E. Ponton, T.M.P. Tait and C.E.M. Wagner, Warped fermions and precision tests, Phys. Rev. D 71 (2005) 015010 [hep-ph/0410344] [SPIRES].

    ADS  Google Scholar 

  26. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  27. N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP 08 (2001) 017 [hep-th/0012148] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  28. R. Rattazzi and A. Zaffaroni, Comments on the holographic picture of the Randall-Sundrum model, JHEP 04 (2001) 021 [hep-th/0012248] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  29. M. Pérez-Victoria, Randall-Sundrum models and the regularized AdS/CFT correspondence, JHEP 05 (2001) 064 [hep-th/0105048] [SPIRES].

    Article  Google Scholar 

  30. S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, Flavor Physics in the Randall-Sundrum Model: I. Theoretical Setup and Electroweak Precision Tests, JHEP 10 (2008) 094 [arXiv:0807.4937] [SPIRES].

    Article  ADS  Google Scholar 

  31. G.R. Dvali, G. Gabadadze and M.A. Shifman, (Quasi)localized gauge field on a brane: Dissipating cosmic radiation to extra dimensions?, Phys. Lett. B 497 (2001) 271 [hep-th/0010071] [SPIRES].

    ADS  Google Scholar 

  32. H. Georgi, A.K. Grant and G. Hailu, Brane couplings from bulk loops, Phys. Lett. B 506 (2001) 207 [hep-ph/0012379] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  33. ALEPH collaboration, J. Alcaraz et al., A Combination of preliminary electroweak measurements and constraints on the standard model, hep-ex/0612034 [SPIRES].

  34. E. Ponton and E. Poppitz, Casimir energy and radius stabilization in five and six dimensional orbifolds, JHEP 06 (2001) 019 [hep-ph/0105021] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  35. H. Abe, T. Kobayashi, N. Maru and K. Yoshioka, Field localization in warped gauge theories, Phys. Rev. D 67 (2003) 045019 [hep-ph/0205344] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  36. ALEPH collaboration, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [SPIRES].

    ADS  Google Scholar 

  37. D0 collaboration, V.M. Abazov et al., Experimental discrimination between charge 2 e/3 top quark and charge 4 e/3 exotic quark production scenarios, Phys. Rev. Lett. 98 (2007) 041801 [hep-ex/0608044] [SPIRES].

    Article  ADS  Google Scholar 

  38. BaBar collaboration, S. Banerjee, Lepton Universality, |V us | and search for second class current in tau decays, arXiv:0811.1429 [SPIRES].

  39. P. Azzurri, Electroweak physics at LEP2, hep-ex/0505009 [SPIRES].

  40. D0 collaboration, V.M. Abazov et al., Observation of Single Top-Quark Production, Phys. Rev. Lett. 103 (2009) 092001 [arXiv:0903.0850] [SPIRES].

    Article  ADS  Google Scholar 

  41. E.L. Berger, Q.-H. Cao and I. Low, Model Independent Constraints Among the Wtb, Zbb and Ztt Couplings, Phys. Rev. D 80 (2009) 074020 [arXiv:0907.2191] [SPIRES].

    ADS  Google Scholar 

  42. F. Larios, M.A. Perez and C.P. Yuan, Analysis of tbW and ttZ couplings from CLEO and LEP/SLC data, Phys. Lett. B 457 (1999) 334 [hep-ph/9903394] [SPIRES].

    ADS  Google Scholar 

  43. G. Altarelli, The electroweak interactions in the standard model and beyond, hep-ph/0406270 [SPIRES].

  44. C.T. Hill, Topcolor, hep-ph/9702320 [SPIRES].

  45. C. Csáki, J. Hubisz and P. Meade, Electroweak symmetry breaking from extra dimensions, hep-ph/0510275 [SPIRES].

  46. G. Cacciapaglia, C. Csáki, C. Grojean, M. Reece and J. Terning, Top and bottom: A brane of their own, Phys. Rev. D 72 (2005) 095018 [hep-ph/0505001] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Gherghetta.

Additional information

ArXiv ePrint: 1006.3322

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, Y., Gherghetta, T. & Stokes, J. Fermion masses in emergent electroweak symmetry breaking. J. High Energ. Phys. 2010, 75 (2010). https://doi.org/10.1007/JHEP12(2010)075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2010)075

Keywords

Navigation