Skip to main content
Log in

Unification and LHC phenomenology of F-theory GUTs with U(1) P Q

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We undertake a phenomenological study of SU(5) F-theory GUT models with an additional U(1)P Q symmetry. In such models, breaking SU(5) with hypercharge flux leads to the presence of non-GUT multiplets in the spectrum. We study the effect these have on the unification of gauge couplings, including two-loop running as well as low-and high-scale threshold corrections. We use the requirement of unification to constrain the size of thresholds from KK modes of SU(5) gauge and matter fields. Assuming the non-GUT multiplets play the role of messengers of gauge mediation leads to controlled non-universalities in the sparticle spectrum while maintaining grand unification, and we study the LHC phenomenology of this scenario. We find that the MSSM spectrum may become compressed or stretched out by up to a factor of three depending on the distribution of hypercharge flux. We present a set of benchmark points whose production cross-sections and decays we investigate, and argue that precision kinematic edge measurements will allow the LHC to distinguish between our model and mGMSB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.J. Heckman, Particle physics implications of F-theory, Ann. Rev. Nucl. Part. Sci. 60 (2010) 237 [arXiv:1001.0577] [INSPIRE].

    Article  ADS  Google Scholar 

  2. T. Weigand, Lectures on F-theory compactifications and model building, Class. Quant. Grav. 27 (2010) 214004 [arXiv:1009.3497] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. M.J. Dolan, J. Marsano, N. Saulina and S. Schäfer-Nameki, F-theory GUTs with U(1) symmetries: generalities and survey, Phys. Rev. D 84 (2011) 066008 [arXiv:1102.0290] [INSPIRE].

    ADS  Google Scholar 

  4. H. Hayashi, T. Kawano, R. Tatar and T. Watari, Codimension-3 singularities and Yukawa couplings in F-theory, Nucl. Phys. B 823 (2009) 47 [arXiv:0901.4941] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. H.M. Lee et al., A unique Z 4 symmetry for the MSSM, Phys. Lett. B 694 (2011) 491 [arXiv:1009.0905] [INSPIRE].

    ADS  Google Scholar 

  6. H.M. Lee, S. Raby, M. Ratz, G.G. Ross, R. Schieren, et al., Discrete R symmetries for the MSSM and its singlet extensions, Nucl. Phys. B 850 (2011) 1 [arXiv:1102.3595] [INSPIRE].

    Article  ADS  Google Scholar 

  7. E. Dudas and E. Palti, On hypercharge flux and exotics in F-theory GUTs, JHEP 09 (2010) 013 [arXiv:1007.1297] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. J. Marsano, Hypercharge flux, exotics and anomaly cancellation in F-theory GUTs, Phys. Rev. Lett. 106 (2011) 081601 [arXiv:1011.2212] [INSPIRE].

    Article  ADS  Google Scholar 

  9. J. Marsano, N. Saulina and S. Schäfer-Nameki, Monodromies, fluxes and compact three-generation F-theory GUTs, JHEP 08 (2009) 046 [arXiv:0906.4672] [INSPIRE].

    Article  ADS  Google Scholar 

  10. J. Marsano, N. Saulina and S. Schäfer-Nameki, Compact F-theory GUTs with U(1) PQ , JHEP 04 (2010) 095 [arXiv:0912.0272] [INSPIRE].

    Article  ADS  Google Scholar 

  11. R. Donagi and M. Wijnholt, Higgs bundles and UV completion in F-theory, arXiv:0904.1218 [INSPIRE].

  12. R. Donagi and M. Wijnholt, Breaking GUT groups in F-theory, arXiv:0808.2223 [INSPIRE].

  13. R. Blumenhagen, Gauge coupling unification in F-theory grand unified theories, Phys. Rev. Lett. 102 (2009) 071601 [arXiv:0812.0248] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. G. Leontaris, N. Tracas and G. Tsamis, Unification, KK-thresholds and the top Yukawa coupling in F-theory GUTs, Eur. Phys. J. C 71 (2011) 1768 [arXiv:1102.5244] [INSPIRE].

    Article  ADS  Google Scholar 

  15. G. Leontaris and N. Vlachos, On the GUT scale of F-theory SU(5), Phys. Lett. B 704 (2011) 620 [arXiv:1105.1858] [INSPIRE].

    ADS  Google Scholar 

  16. J.C. Callaghan, S.F. King, G.K. Leontaris and G.G. Ross, Towards a realistic F-theory GUT, arXiv:1109.1399 [INSPIRE].

  17. A. Anandakrishnan and S. Raby, Gauge coupling unification in heterotic string models with gauge mediated SUSY breaking, Phys. Rev. D 83 (2011) 075008 [arXiv:1101.1976] [INSPIRE].

    ADS  Google Scholar 

  18. S.P. Martin, Generalized messengers of supersymmetry breaking and the sparticle mass spectrum, Phys. Rev. D 55 (1997) 3177 [hep-ph/9608224] [INSPIRE].

    ADS  Google Scholar 

  19. P. Meade, N. Seiberg and D. Shih, General gauge mediation, Prog. Theor. Phys. Suppl. 177 (2009) 143 [arXiv:0801.3278] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  20. R. Donagi and M. Wijnholt, Model building with F-theory, arXiv:0802.2969 [INSPIRE].

  21. C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theory — I, JHEP 01 (2009) 058 [arXiv:0802.3391] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theory — II: experimental predictions, JHEP 01 (2009) 059 [arXiv:0806.0102] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. R. Blumenhagen, T.W. Grimm, B. Jurke and T. Weigand, Global F-theory GUTs, Nucl. Phys. B 829 (2010) 325 [arXiv:0908.1784] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. T.W. Grimm, S. Krause and T. Weigand, F-theory GUT vacua on compact Calabi-Yau fourfolds, JHEP 07 (2010) 037 [arXiv:0912.3524] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. H. Hayashi, T. Kawano, Y. Tsuchiya and T. Watari, More on dimension-4 proton decay problem in F-theory — Spectral surface, discriminant locus and monodromy, Nuclear Physics B 840 (2010) 304 [arXiv:1004.3870].

    ADS  MathSciNet  Google Scholar 

  26. T.W. Grimm and T. Weigand, On abelian gauge symmetries and proton decay in global F-theory GUTs, Phys. Rev. D 82 (2010) 086009 [arXiv:1006.0226] [INSPIRE].

    ADS  Google Scholar 

  27. J. Marsano, N. Saulina and S. Schäfer-Nameki, A note on G-fluxes for F-theory model building, JHEP 11 (2010) 088 [arXiv:1006.0483] [INSPIRE].

    Article  ADS  Google Scholar 

  28. J. Marsano, N. Saulina and S. Schäfer-Nameki, On G-flux, M5 instantons and U(1)s in F-theory, arXiv:1107.1718 [INSPIRE].

  29. T.W. Grimm, M. Kerstan, E. Palti and T. Weigand, Massive abelian gauge symmetries and fluxes in F-theory, arXiv:1107.3842 [INSPIRE].

  30. S. Krause, C. Mayrhofer and T. Weigand, G 4 flux, chiral matter and singularity resolution in F-theory compactifications, arXiv:1109.3454 [INSPIRE].

  31. G. Giudice and A. Masiero, A natural solution to the μ problem in supergravity theories, Phys. Lett. B 206 (1988) 480 [INSPIRE].

    ADS  Google Scholar 

  32. M. Ibe and R. Kitano, Sweet spot supersymmetry, JHEP 08 (2007) 016 [arXiv:0705.3686] [INSPIRE].

    Article  ADS  Google Scholar 

  33. J. Marsano, N. Saulina and S. Schäfer-Nameki, Gauge mediation in F-theory GUT models, Phys. Rev. D 80 (2009) 046006 [arXiv:0808.1571] [INSPIRE].

    ADS  Google Scholar 

  34. J.J. Heckman and C. Vafa, F-theory, GUTs and the weak scale, JHEP 09 (2009) 079 [arXiv:0809.1098] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  35. J.P. Conlon, Gauge threshold corrections for local string models, JHEP 04 (2009) 059 [arXiv:0901.4350] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  36. J.P. Conlon and E. Palti, On gauge threshold corrections for local IIB/F-theory GUTs, Phys. Rev. D 80 (2009) 106004 [arXiv:0907.1362] [INSPIRE].

    ADS  Google Scholar 

  37. S. Bethke, The 2009 world average of α s , Eur. Phys. J. C 64 (2009) 689 [arXiv:0908.1135] [INSPIRE].

    Article  ADS  Google Scholar 

  38. M.L. Alciati, F. Feruglio, Y. Lin and A. Varagnolo, Proton lifetime from SU(5) unification in extra dimensions, JHEP 03 (2005) 054 [hep-ph/0501086] [INSPIRE].

    Article  ADS  Google Scholar 

  39. B.S. Acharya, G. Kane and E. Kuflik, String theories with moduli stabilization imply non-thermal cosmological history and particular dark matter, arXiv:1006.3272 [INSPIRE].

  40. J.R. Ellis, K. Enqvist, D.V. Nanopoulos and K. Tamvakis, Gaugino masses and grand unification, Phys. Lett. B 155 (1985) 381 [INSPIRE].

    ADS  Google Scholar 

  41. T. Li, J.A. Maxin, D.V. Nanopoulos and J.W. Walker, Blueprints of the no-scale multiverse at the LHC, Phys. Rev. D 84 (2011) 056016 [arXiv:1101.2197] [INSPIRE].

    ADS  Google Scholar 

  42. B. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  43. R. Rattazzi and U. Sarid, Large tan β in gauge mediated SUSY breaking models, Nucl. Phys. B 501 (1997) 297 [hep-ph/9612464] [INSPIRE].

    Article  ADS  Google Scholar 

  44. K. Babu, C.F. Kolda and F. Wilczek, Experimental consequences of a minimal messenger model for supersymmetry breaking, Phys. Rev. Lett. 77 (1996) 3070 [hep-ph/9605408] [INSPIRE].

    Article  ADS  Google Scholar 

  45. S. Abel, M.J. Dolan, J. Jaeckel and V.V. Khoze, Phenomenology of pure general gauge mediation, JHEP 12 (2009) 001 [arXiv:0910.2674] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  46. S. Abel, M.J. Dolan, J. Jaeckel and V.V. Khoze, Pure general gauge mediation for early LHC searches, JHEP 12 (2010) 049 [arXiv:1009.1164] [INSPIRE].

    Article  ADS  Google Scholar 

  47. J.L. Feng et al., Measuring slepton masses and mixings at the LHC, JHEP 01 (2010) 047 [arXiv:0910.1618] [INSPIRE].

    Article  ADS  Google Scholar 

  48. T. Ito, R. Kitano and T. Moroi, Measurement of the superparticle mass spectrum in the long-lived stau scenario at the LHC, JHEP 04 (2010) 017 [arXiv:0910.5853] [INSPIRE].

    Article  ADS  Google Scholar 

  49. J.J. Heckman, J. Shao and C. Vafa, F-theory and the LHC: stau search, JHEP 09 (2010) 020 [arXiv:1001.4084] [INSPIRE].

    Article  ADS  Google Scholar 

  50. CMS collaboration, Search for heavy stable charged particles, PAS-EXO-11-022 (2011).

  51. G. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [INSPIRE].

    Article  ADS  Google Scholar 

  52. M. Muhlleitner, A. Djouadi and Y. Mambrini, SDECAY: a Fortran code for the decays of the supersymmetric particles in the MSSM, Comput. Phys. Commun. 168 (2005) 46 [hep-ph/0311167] [INSPIRE].

    Article  ADS  Google Scholar 

  53. J.J. Heckman, G.L. Kane, J. Shao and C. Vafa, The footprint of F-theory at the LHC, JHEP 10 (2009) 039 [arXiv:0903.3609] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  54. B.S. Acharya et al., Identifying multi-top events from gluino decay at the LHC, arXiv:0901.3367 [INSPIRE].

  55. A.J. Barr and C.G. Lester, A review of the mass measurement techniques proposed for the Large Hadron Collider, J. Phys. G 37 (2010) 123001 [arXiv:1004.2732] [INSPIRE].

    ADS  Google Scholar 

  56. B. Allanach, C. Lester, M.A. Parker and B. Webber, Measuring sparticle masses in nonuniversal string inspired models at the LHC, JHEP 09 (2000) 004 [hep-ph/0007009] [INSPIRE].

    Article  ADS  Google Scholar 

  57. B. Allanach and M.J. Dolan, Supersymmetry with prejudice: fitting the wrong model to LHC data, arXiv:1107.2856 [INSPIRE].

  58. M. Einhorn and D. Jones, The weak mixing angle and unification mass in supersymmetric SU(5), Nucl. Phys. B 196 (1982) 475 [INSPIRE].

    Article  ADS  Google Scholar 

  59. D. Jones, The two Loop β-function for a G 1 × G 2 gauge theory, Phys. Rev. D 25 (1982) 581 [INSPIRE].

    ADS  Google Scholar 

  60. M.S. Carena, S. Pokorski and C. Wagner, On the unification of couplings in the minimal supersymmetric Standard Model, Nucl. Phys. B 406 (1993) 59 [hep-ph/9303202] [INSPIRE].

    Article  ADS  Google Scholar 

  61. Y. Yamada, SUSY and GUT threshold effects in SUSY SU(5) models, Z. Phys. C 60 (1993) 83 [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Dolan.

Additional information

ArXiv ePrint: 1109.4958

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolan, M.J., Marsano, J. & Schäfer-Nameki, S. Unification and LHC phenomenology of F-theory GUTs with U(1) P Q . J. High Energ. Phys. 2011, 32 (2011). https://doi.org/10.1007/JHEP12(2011)032

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2011)032

Keywords

Navigation