Skip to main content
Log in

\( \mathcal{N} = {1} \) sigma models in AdS4

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study sigma models in AdS4 with global \( \mathcal{N} = {1} \) supersymmetry and find that they differ significantly from their flat-space cousins — the target space is constrained to be a Kähler manifold with an exact Kähler form, the superpotential transforms under Kähler transformations, the space of supersymmetric vacua is generically a set of isolated points even when the superpotential vanishes, and the R-symmetry is classically broken by the cosmological constant. Remarkably, the exactness of the Kähler class is also required for the sigma model to arise as a decoupling limit of \( \mathcal{N} = {1} \) supergravity, and ensures the vanishing of gravitational anomalies. As applications of these results, we argue that fields with AdS4 scale masses are ubiquitous in, for example, type IIB \( \mathcal{N} = {1} \) AdS4 vacua stabilized near large volume; we also present a schematic argument that the Affleck-Dine-Seiberg runaway of N f < N c SQCD can be regulated by considering the theory in AdS4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733 [hep-th/0610102] [INSPIRE].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional string compactifications with D-branes, orientifolds and fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].

    Article  ADS  Google Scholar 

  3. F. Denef, Les Houches lectures on constructing string vacua, arXiv:0803.1194 [INSPIRE].

  4. S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  5. Z. Komargodski and N. Seiberg, Comments on supercurrent multiplets, supersymmetric field theories and supergravity, JHEP 07 (2010) 017 [arXiv:1002.2228] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. I. Affleck, M. Dine and N. Seiberg, Dynamical supersymmetry breaking in supersymmetric QCD, Nucl. Phys. B 241 (1984) 493.

    Article  ADS  Google Scholar 

  8. O. Aharony, M. Berkooz, D. Tong, and S. Yankielowicz, work in progress.

  9. E. Witten and J. Bagger, Quantization of Newton’s constant in certain supergravity theories, Phys. Lett. B 115 (1982) 202.

    ADS  MathSciNet  Google Scholar 

  10. B. Keck, An alternative class of supersymmetries, J. Phys. A 8 (1975) 1819.

    ADS  MathSciNet  Google Scholar 

  11. B. Zumino, Nonlinear realization of supersymmetry in Anti de Sitter space, Nucl. Phys. B 127 (1977) 189.

    Article  ADS  Google Scholar 

  12. E. Ivanov and A.S. Sorin, Wess-Zumino model as linear σ-model of spontaneously broken conformal and OSp(1, 4) supersymmetries, Sov. J. Nucl. Phys. 30 (1979) 440 [INSPIRE].

    MathSciNet  Google Scholar 

  13. E. Ivanov and A.S. Sorin, Superfield formulation of Osp(1,4) supersymmetry, J. Phys. A 13 (1980) 1159 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  14. P. Breitenlohner and D.Z. Freedman, Positive energy in anti-de Sitter backgrounds and gauged extended supergravity, Phys. Lett. B 115 (1982) 197 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  15. C.J. Burges, D.Z. Freedman, S. Davis and G. Gibbons, Supersymmetry in anti-de Sitter space, Annals Phys. 167 (1986) 285 [INSPIRE].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. B. de Wit and I. Herger, Anti-de Sitter supersymmetry, Lect. Notes Phys. 541 (2000) 79 [hep-th/9908005] [INSPIRE].

    Article  ADS  Google Scholar 

  17. D. McKeon and C. Schubert, Supersymmetry on AdS 3 and AdS 4, Class. Quant. Grav. 21 (2004) 3337 [hep-th/0301225] [INSPIRE].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. B. Gripaios, H.D. Kim, R. Rattazzi, M. Redi and C. Scrucca, Gaugino mass in AdS space, JHEP 02 (2009) 043 [arXiv:0811.4504] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. R. Rattazzi and M. Redi, Gauge boson mass generation in AdS 4, JHEP 12 (2009) 025 [arXiv:0908.4150] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. O. Aharony, D. Marolf and M. Rangamani, Conformal field theories in Anti-de Sitter space, JHEP 02 (2011) 041 [arXiv:1011.6144] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. J. Donoghue, E. Golowich, and B. R. Holstein, Dynamics of the standard model, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 2 (1992) 1.

    Google Scholar 

  22. J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992).

    Google Scholar 

  23. R. Harvey and H.B. Lawson, Calibrated geometries, Acta Mathematica 148 (1982) 47.

    Article  MATH  MathSciNet  Google Scholar 

  24. S. Weinberg, The quantum theory of fields. Vol. 3: supersymmetry, Cambridge University Press, Cambridge U.K. (2000).

    MATH  Google Scholar 

  25. A.E. Nelson and N. Seiberg, R symmetry breaking versus supersymmetry breaking, Nucl. Phys. B 416 (1994) 46 [hep-ph/9309299] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. C.G. Callan Jr. and F. Wilczek, Infrared behavior at negative curvature, Nucl. Phys. B 340 (1990) 366 [INSPIRE].

    Article  ADS  Google Scholar 

  27. A.J. Amsel and D. Marolf, Supersymmetric multi-trace boundary conditions in AdS, Class. Quant. Grav. 26 (2009) 025010 [arXiv:0808.2184] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. D. Butter and S.M. Kuzenko, \( \mathcal{N} = {2} \) AdS supergravity and supercurrents, JHEP 07 (2011) 081 [arXiv:1104.2153] [INSPIRE].

    Article  ADS  Google Scholar 

  29. S. Ferrara and B. Zumino, Transformation properties of the supercurrent, Nucl. Phys. B 87 (1975) 207 [INSPIRE].

    Article  ADS  Google Scholar 

  30. G.W. Moore and P.C. Nelson, The etiology of sigma model anomalies, Commun. Math. Phys. 100 (1985) 83.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. J. Distler and E. Sharpe, Quantization of Fayet-Iliopoulos parameters in supergravity, Phys. Rev. D 83 (2011) 085010 [arXiv:1008.0419] [INSPIRE].

    ADS  Google Scholar 

  32. S. Kachru, R. Kallosh, A.D. Linde, J.M. Maldacena, L.P. McAllister, et al., Towards inflation in string theory, JCAP 10 (2003) 013 [hep-th/0308055] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  33. S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  34. D. Lüst and D. Tsimpis, Classes of AdS 4 type IIA / IIB compactifications with SU(3) × SU(3) structure, JHEP 04 (2009) 111 [arXiv:0901.4474] [INSPIRE].

    Article  ADS  Google Scholar 

  35. D. Lüst and D. Tsimpis, New supersymmetric AdS 4 type-II vacua, JHEP 09 (2009) 098 [arXiv:0906.2561] [INSPIRE].

    Article  Google Scholar 

  36. V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. J.P. Conlon, F. Quevedo and K. Suruliz, Large-volume flux compactifications: moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP 08 (2005) 007 [hep-th/0505076] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  38. O. DeWolfe and S.B. Giddings, Scales and hierarchies in warped compactifications and brane worlds, Phys. Rev. D 67 (2003) 066008 [hep-th/0208123] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  39. P.G. Camara, L. Ibáñez and A. Uranga, Flux induced SUSY breaking soft terms, Nucl. Phys. B 689 (2004) 195 [hep-th/0311241] [INSPIRE].

    Article  ADS  Google Scholar 

  40. M. Graña, T.W. Grimm, H. Jockers and J. Louis, Soft supersymmetry breaking in Calabi-Yau orientifolds with D-branes and fluxes, Nucl. Phys. B 690 (2004) 21 [hep-th/0312232] [INSPIRE].

    Article  ADS  Google Scholar 

  41. D. Baumann, A. Dymarsky, I.R. Klebanov, J.M. Maldacena, L.P. McAllister, et al., On D3-brane potentials in compactifications with fluxes and wrapped D-branes, JHEP 11 (2006) 031 [hep-th/0607050] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  42. E. Witten, Nonperturbative superpotentials in string theory, Nucl. Phys. B 474 (1996) 343 [hep-th/9604030] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  43. K.A. Intriligator and N. Seiberg, Lectures on supersymmetric gauge theories and electric-magnetic duality, Nucl. Phys. Proc. Suppl. 45BC (1996) 1 [hep-th/9509066] [INSPIRE].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  44. N. Seiberg, Naturalness versus supersymmetric nonrenormalization theorems, Phys. Lett. B 318 (1993) 469 [hep-ph/9309335] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  45. S. Hellerman and E. Sharpe, Sums over topological sectors and quantization of Fayet-Iliopoulos parameters, arXiv:1012.5999 [INSPIRE].

  46. P. Adamietz, P. Binetruy, G. Girardi and R. Grimm, Supergravity and matter: linear multiplet couplings and Kähler anomaly cancellation, Nucl. Phys. B 401 (1993) 257 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  47. P. Griffiths and J. Harris, Principles of algebraic geometry, John Wiley & Sons, New York U.S.A. (1994).

    MATH  Google Scholar 

  48. T. Banks and N. Seiberg, Symmetries and strings in field theory and gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].

    ADS  Google Scholar 

  49. R. Bott and L.W. Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics, Springer, Berlin Germany (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Jockers.

Additional information

ArXiv ePrint: 1104.3155

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, A., Jockers, H., Kumar, V. et al. \( \mathcal{N} = {1} \) sigma models in AdS4 . J. High Energ. Phys. 2011, 42 (2011). https://doi.org/10.1007/JHEP12(2011)042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2011)042

Keywords

Navigation