Skip to main content
Log in

Wall-crossing in coupled 2d-4d systems

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We introduce a new wall-crossing formula which combines and generalizes the Cecotti-Vafa and Kontsevich-Soibelman formulas for supersymmetric 2d and 4d systems respectively. This 2d-4d wall-crossing formula governs the wall-crossing of BPS states in an \( \mathcal{N}=2 \) supersymmetric 4d gauge theory coupled to a supersymmetric surface defect. When the theory and defect are compactified on a circle, we get a 3d theory with a supersymmetric line operator, corresponding to a hyperholomorphic connection on a vector bundle over a hyperkähler space. The 2d-4d wall-crossing formula can be interpreted as a smoothness condition for this hyperholomorphic connection. We explain how the 2d-4d BPS spectrum can be determined for 4d theories of class \( \mathcal{S} \), that is, for those theories obtained by compactifying the six-dimensional (0, 2) theory with a partial topological twist on a punctured Riemann surface C. For such theories there are canonical surface defects. We illustrate with several examples in the case of A 1 theories of class \( \mathcal{S} \). Finally, we indicate how our results can be used to produce solutions to the A 1 Hitchin equations on the Riemann surface C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Gaiotto, G.W. Moore and A. Neitzke, Four-dimensional wall-crossing via three-dimensional field theory, Commun. Math. Phys. 299 (2010) 163 [arXiv:0807.4723] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin systems and the WKB approximation, arXiv:0907.3987 [INSPIRE].

  3. D. Gaiotto, G.W. Moore and A. Neitzke, Framed BPS states, arXiv:1006.0146 [INSPIRE].

  4. A. Kapustin, Wilson-t Hooft operators in four-dimensional gauge theories and S-duality, Phys. Rev. D 74 (2006) 025005 [hep-th/0501015] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. A. Kapustin and E. Witten, Electric-magnetic duality and the geometric Langlands program, Commun. Num. Theor. Phys. 1 (2007) 1 [hep-th/0604151] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  6. S. Gukov and E. Witten, Gauge theory, ramification, and the geometric Langlands program, hep-th/0612073 [INSPIRE].

  7. E. Witten, Gauge theory and wild ramification, arXiv:0710.0631 [INSPIRE].

  8. S. Gukov and E. Witten, Rigid surface operators, Adv. Theor. Math. Phys. 14 (2010) [arXiv:0804.1561] [INSPIRE].

  9. D.S. Freed, Extended structures in topological quantum field theory, hep-th/9306045 [INSPIRE].

  10. J. Baez and J. Dolan, Higher dimensional algebra and topological quantum field theory, J. Math. Phys. 36 (1995) 6073 [q-alg/9503002] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. J. Lurie, On the classification of topological field theories, in Current developments in mathematics 2008, International Press, Somerville, U.S.A. (2009).

  12. D.S. Freed, M.J. Hopkins, J. Lurie and C. Teleman, Topological quantum field theories from compact Lie groups, arXiv:0905.0731 [INSPIRE].

  13. A. Kapustin, Topological field theory, higher categories and their applications, arXiv:1004.2307 [INSPIRE].

  14. A. Kapustin and N. Saulina, Surface operators in 3D topological field theory and 2D rational conformal field theory, arXiv:1012.0911 [INSPIRE].

  15. A. Kapustin and N. Saulina, The algebra of Wilson-t Hooft operators, Nucl. Phys. B 814 (2009) 327 [arXiv:0710.2097] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. A. Kapustin, Holomorphic reduction of N = 2 gauge theories, Wilson-t Hooft operators and S-duality, hep-th/0612119 [INSPIRE].

  17. D. Gaiotto, Surface operators in N = 2 4D gauge theories, JHEP 11 (2012) 090 [arXiv:0911.1316] [INSPIRE].

    Article  ADS  Google Scholar 

  18. S. Cecotti, P. Fendley, K.A. Intriligator and C. Vafa, A new supersymmetric index, Nucl. Phys. B 386 (1992) 405 [hep-th/9204102] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. S. Cecotti and C. Vafa, Ising model and N = 2 supersymmetric theories, Commun. Math. Phys. 157 (1993) 139 [hep-th/9209085] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. S. Cecotti and C. Vafa, On classification of N = 2 supersymmetric theories, Commun. Math. Phys. 158 (1993) 569 [hep-th/9211097] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. N. Dorey, The BPS spectra of two-dimensional supersymmetric gauge theories with twisted mass terms, JHEP 11 (1998) 005 [hep-th/9806056] [INSPIRE].

    ADS  Google Scholar 

  22. S. Cecotti, unpublished.

  23. D. Tong, Quantum vortex strings: a review, Annals Phys. 324 (2009) 30 [arXiv:0809.5060] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  24. A. Hanany and K. Hori, Branes and N = 2 theories in two-dimensions, Nucl. Phys. B 513 (1998) 119 [hep-th/9707192] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].

  26. N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. W. Lerche, Introduction to Seiberg-Witten theory and its stringy origin, Nucl. Phys. Proc. Suppl. 55B (1997) 83 [hep-th/9611190] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. L. Álvarez-Gaumé and S. Hassan, Introduction to S duality in N = 2 supersymmetric gauge theories: a pedagogical review of the work of Seiberg and Witten, Fortsch. Phys. 45 (1997) 159 [hep-th/9701069] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  29. A. de Saint Exupéry, Le petit prince, Reynal & Hitchcock, U.S.A. (1943).

    Google Scholar 

  30. E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. D.R. Morrison and M.R. Plesser, Summing the instantons: quantum cohomology and mirror symmetry in toric varieties, Nucl. Phys. B 440 (1995) 279 [hep-th/9412236] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, arXiv:0811.2435 [INSPIRE].

  33. F. Denef and G.W. Moore, Split states, entropy enigmas, holes and halos, JHEP 11 (2011) 129 [hep-th/0702146] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. E. Andriyash, F. Denef, D.L. Jafferis and G.W. Moore, Wall-crossing from supersymmetric galaxies, JHEP 01 (2012) 115 [arXiv:1008.0030] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. N. Seiberg and E. Witten, Gauge dynamics and compactification to three-dimensions, hep-th/9607163 [INSPIRE].

  36. T. Gocho and H. Nakajima, Einstein-hermitian connections on hyper-Kähler quotients, J. Math. Soc. Japan 44 (1992) 43.

    Article  MathSciNet  MATH  Google Scholar 

  37. N.S. Manton and B.J. Schroers, Bundles over moduli spaces and the quantization of BPS monopoles, Ann. Phys. 225 (1993) 290.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. M. Verbitsky, Hyperholomorphic bundles over a hyper-Kähler manifold, J. Algebraic Geom. 5 (1996) 633.

    MathSciNet  MATH  Google Scholar 

  39. M. Verbitsky, Hyperkähler manifolds with torsion obtained from hyperholomorphic bundles, Math. Res. Lett. 10 (2003) 501.

    MathSciNet  MATH  Google Scholar 

  40. M. Verbitsky and D. Kaledin, Hyperkähler manifolds, Mathematical Physics volume 12, International Press, Somerville, U.S.A. (1999).

    Google Scholar 

  41. B. Feix, Hypercomplex manifolds and hyperholomorphic bundles, Math. Proc. Cambridge Philos. Soc. 133 (2002) 443.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500 (1997) 3 [hep-th/9703166] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].

    Article  ADS  Google Scholar 

  44. A. Klemm, W. Lerche, P. Mayr, C. Vafa and N.P. Warner, Selfdual strings and N = 2 supersymmetric field theory, Nucl. Phys. B 477 (1996) 746 [hep-th/9604034] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. N. Seiberg, Modifying the sum over topological sectors and constraints on supergravity, JHEP 07 (2010) 070 [arXiv:1005.0002] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. T. Banks and N. Seiberg, Symmetries and strings in field theory and gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].

    ADS  Google Scholar 

  47. E. Andriyash, F. Denef, D.L. Jafferis and G.W. Moore, Bound state transformation walls, JHEP 03 (2012) 007 [arXiv:1008.3555] [INSPIRE].

    Article  ADS  Google Scholar 

  48. G.W. Moore, PiTP lectures on BPS states and wall-crossing in d = 4, N = 2 theories, available online.

  49. T. Dimofte, S. Gukov and Y. Soibelman, Quantum wall crossing in N = 2 gauge theories, Lett. Math. Phys. 95 (2011) 1 [arXiv:0912.1346] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. E. Witten, D-branes and k-theory, JHEP 12 (1998) 019 [hep-th/9810188] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. N. Nekrasov and E. Witten, The Ω deformation, branes, integrability and Liouville theory, JHEP 09 (2010) 092 [arXiv:1002.0888] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. T. Hausel and M. Thaddeus, Mirror symmetry, Langlands duality and the Hitchin system, math/0205236 [INSPIRE].

  53. G. Thompson, Holomorphic vector bundles, knots and the Rozansky-Witten invariants, Adv. Theor. Math. Phys. 5 (2002) 457 [hep-th/0002168] [INSPIRE].

    Google Scholar 

  54. H. Ooguri and C. Vafa, Summing up D instantons, Phys. Rev. Lett. 77 (1996) 3296 [hep-th/9608079] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. N. Seiberg and S.H. Shenker, Hypermultiplet moduli space and string compactification to three-dimensions, Phys. Lett. B 388 (1996) 521 [hep-th/9608086] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  56. E. Frenkel and E. Witten, Geometric endoscopy and mirror symmetry, Commun. Num. Theor. Phys. 2 (2008) 113 [arXiv:0710.5939] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  57. S. Cecotti and C. Vafa, Topological antitopological fusion, Nucl. Phys. B 367 (1991) 359 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  58. L.F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa and H. Verlinde, Loop and surface operators in N = 2 gauge theory and Liouville modular geometry, JHEP 01 (2010) 113 [arXiv:0909.0945] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. D. Gaiotto and J. Maldacena, The gravity duals of N = 2 superconformal field theories, arXiv:0904.4466 [INSPIRE].

  60. N.J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. 55 (1987) 59.

    Article  MathSciNet  MATH  Google Scholar 

  61. V. Balaji, I. Biswas, O. Gabber and D.S. Nagaraj, Brauer obstruction for a universal vector bundle, C. R. Math. Acad. Sci. Paris 345 (2007) 265.

    Article  MathSciNet  MATH  Google Scholar 

  62. I. Biswas and A. Hogadi, Brauer group of moduli spaces of PGL(r)-bundles over a curve, arXiv:0904.4640.

  63. I. Biswas and A. Dey, Brauer group of a moduli space of parabolic vector bundles over a curve, arXiv:1005.3161.

  64. V.V. Fock and A.B. Goncharov, Moduli spaces of local systems and higher Teichmüller theory, math/0311149.

  65. V. Fock, Dual Teichmüller spaces, math/9702018.

  66. V.V. Fock and A.B. Goncharov, Dual Teichmüller and lamination spaces, in Handbook of Teichmüller theory. Volume I, IRMA Lect. Math. Theor. Phys. volume 11, European Mathematical Society, Zürich Switzerland (2007), math/0510312.

  67. J. Teschner, An Analog of a modular functor from quantized Teichmüller theory, math/0510174 [INSPIRE].

  68. A.D. Shapere and C. Vafa, BPS structure of Argyres-Douglas superconformal theories, hep-th/9910182 [INSPIRE].

  69. F. Ferrari and A. Bilal, The strong coupling spectrum of the Seiberg-Witten theory, Nucl. Phys. B 469 (1996) 387 [hep-th/9602082] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  70. A. Bilal and F. Ferrari, Curves of marginal stability and weak and strong coupling BPS spectra in N = 2 supersymmetric QCD, Nucl. Phys. B 480 (1996) 589 [hep-th/9605101] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  71. M. Herbst, On higher rank coisotropic A-branes, J. Geom. Phys. 62 (2012) 156 [arXiv:1003.3771] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  72. E. Witten, Fivebranes and knots, arXiv:1101.3216 [INSPIRE].

  73. K. Hori, A. Iqbal and C. Vafa, D-branes and mirror symmetry, hep-th/0005247 [INSPIRE].

  74. E.J. Martinec and G.W. Moore, On decay of k-theory, hep-th/0212059 [INSPIRE].

  75. G.W. Moore and A. Parnachev, Localized tachyons and the quantum McKay correspondence, JHEP 11 (2004) 086 [hep-th/0403016] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  76. G.W. Moore and A. Parnachev, Profiling the brane drain in a nonsupersymmetric orbifold, JHEP 01 (2006) 024 [hep-th/0507190] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  77. L.D. Faddeev and L.A. Takhtajan, Hamiltonian methods in the theory of solitons (translated from 1986 Russian original by A.G. Reyman), Classics in Mathematics, Springer, Berlin (2007).

  78. O. Babelon, D. Bernard and M. Talon, Introduction to classical integrable systems, Cambridge monographs on mathematical physics, Cambridge University Press, Cambridge U.K. (2003).

  79. S. Lukyanov and A. Zamolodchikov, Quantum sine(h)-Gordon model and classical integrable equations, JHEP 07 (2010) 008 [arXiv:1003.5333] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  80. L.F. Alday and J. Maldacena, Null polygonal Wilson loops and minimal surfaces in Anti-de-Sitter space, JHEP 11 (2009) 082 [arXiv:0904.0663] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  81. L.F. Alday, D. Gaiotto and J. Maldacena, Thermodynamic bubble ansatz, JHEP 09 (2011) 032 [arXiv:0911.4708] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  82. L.F. Alday, J. Maldacena, A. Sever and P. Vieira, Y-system for scattering amplitudes, J. Phys. A 43 (2010) 485401 [arXiv:1002.2459] [INSPIRE].

    MathSciNet  Google Scholar 

  83. L.F. Alday, D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, An operator product expansion for polygonal null Wilson loops, JHEP 04 (2011) 088 [arXiv:1006.2788] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  84. H. Ooguri and C. Vafa, Knot invariants and topological strings, Nucl. Phys. B 577 (2000) 419 [hep-th/9912123] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  85. A. Neitzke and J. Walcher, Background independence and the open topological string wavefunction, in From Hodge theory to integrability and TQFT, R.Y. Donagi et al., American Mathematical Society, Providence U.S.A. (2008), arXiv:0709.2390 [INSPIRE].

    Google Scholar 

  86. M. Aganagic and M. Yamazaki, Open BPS wall crossing and M-theory, Nucl. Phys. B 834 (2010) 258 [arXiv:0911.5342] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  87. P. Sulkowski, Wall-crossing, open BPS counting and matrix models, JHEP 03 (2011) 089 [Erratum ibid. 1104 (2011) 046] [arXiv:1011.5269] [INSPIRE].

  88. T. Buscher, U. Lindström and M. Roček, New Supersymmetric σ-models with Wess-Zumino terms, Phys. Lett. B 202 (1988) 94 [INSPIRE].

    ADS  Google Scholar 

  89. U. Lindström, M. Roček, R. von Unge and M. Zabzine, Generalized Kähler manifolds and off-shell supersymmetry, Commun. Math. Phys. 269 (2007) 833 [hep-th/0512164] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  90. U. Lindström, M. Roček, I. Ryb, R. von Unge and M. Zabzine, T-duality and generalized Kähler geometry, JHEP 02 (2008) 056 [arXiv:0707.1696] [INSPIRE].

    Article  ADS  Google Scholar 

  91. R. Ward, On selfdual gauge fields, Phys. Lett. A 61 (1977) 81 [INSPIRE].

    ADS  Google Scholar 

  92. A. Kapustin, D-branes in a topologically nontrivial B field, Adv. Theor. Math. Phys. 4 (2000) 127 [hep-th/9909089] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Neitzke.

Additional information

ArXiv ePrint: 1103.2598

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaiotto, D., Moore, G.W. & Neitzke, A. Wall-crossing in coupled 2d-4d systems. J. High Energ. Phys. 2012, 82 (2012). https://doi.org/10.1007/JHEP12(2012)082

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2012)082

Keywords

Navigation