Skip to main content
Log in

Conformal Regge theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We generalize Regge theory to correlation functions in conformal field theories. This is done by exploring the analogy between Mellin amplitudes in AdS/CFT and S-matrix elements. In the process, we develop the conformal partial wave expansion in Mellin space, elucidating the analytic structure of the partial amplitudes. We apply the new formalism to the case of four point correlation functions between protected scalar operators in \( \mathcal{N}=4 \) Super Yang Mills, in cases where the Regge limit is controlled by the leading twist operators associated to the pomeron-graviton Regge trajectory. At weak coupling, we are able to predict to arbitrary high order in the ’t Hooft coupling the behaviour near J = 1 of the OPE coefficients \( {C_{{\mathcal{OO}J}}} \) between the external scalars and the spin J leading twist operators. At strong coupling, we use recent results for the anomalous dimension of the leading twist operators to improve current knowledge of the AdS graviton Regge trajectory — in particular, determining the next and next to next leading order corrections to the intercept. Finally, by taking the flat space limit and considering the Virasoro-Shapiro S-matrix element, we compute the strong coupling limit of the OPE coefficient \( {C_{{\mathcal{LL}J}}} \) between two Lagrangians and the leading twist operators of spin J.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Regge, Introduction to complex orbital momenta, Nuovo Cim. 14 (1959) 951 [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  2. V. Gribov, The theory of complex angular momenta: Gribov lectures on theoretical physics, Cambridge University Press (1986) [INSPIRE].

  3. J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

  4. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  6. R.C. Brower, J. Polchinski, M.J. Strassler and C.-I. Tan, The Pomeron and gauge/string duality, JHEP 12 (2007) 005 [hep-th/0603115] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. L. Cornalba, Eikonal methods in AdS/CFT: Regge theory and multi-reggeon exchange, arXiv:0710.5480 [INSPIRE].

  8. L. Cornalba, M.S. Costa and J. Penedones, Eikonal Methods in AdS/CFT: BFKL Pomeron at Weak Coupling, JHEP 06 (2008) 048 [arXiv:0801.3002] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. G. Mack, D-independent representation of Conformal Field Theories in D dimensions via transformation to auxiliary Dual Resonance Models. Scalar amplitudes, arXiv:0907.2407 [INSPIRE].

  10. J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP 03 (2011) 025 [arXiv:1011.1485] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. A.L. Fitzpatrick, J. Kaplan, J. Penedones, S. Raju and B.C. van Rees, A Natural Language for AdS/CFT Correlators, JHEP 11 (2011) 095 [arXiv:1107.1499] [INSPIRE].

    Article  ADS  Google Scholar 

  12. M.F. Paulos, Towards Feynman rules for Mellin amplitudes, JHEP 10 (2011) 074 [arXiv:1107.1504] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. A.L. Fitzpatrick and J. Kaplan, Analyticity and the Holographic S-matrix, JHEP 10 (2012) 127 [arXiv:1111.6972] [INSPIRE].

    Article  ADS  Google Scholar 

  14. D. Nandan, A. Volovich and C. Wen, On Feynman Rules for Mellin Amplitudes in AdS/CFT, JHEP 05 (2012) 129 [arXiv:1112.0305] [INSPIRE].

    Article  ADS  Google Scholar 

  15. M.F. Paulos, M. Spradlin and A. Volovich, Mellin Amplitudes for Dual Conformal Integrals, JHEP 08 (2012) 072 [arXiv:1203.6362] [INSPIRE].

    Article  ADS  Google Scholar 

  16. A.L. Fitzpatrick and J. Kaplan, AdS Field Theory from Conformal Field Theory, arXiv:1208.0337 [INSPIRE].

  17. A. Kotikov, L. Lipatov, A. Rej, M. Staudacher and V. Velizhanin, Dressing and wrapping, J. Stat. Mech. 0710 (2007) P10003 [arXiv:0704.3586] [INSPIRE].

    Article  Google Scholar 

  18. M. Virasoro, Alternative constructions of crossing-symmetric amplitudes with Regge behavior, Phys. Rev. 177 (1969) 2309 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. V. Dobrev, V. Petkova, S. Petrova and I. Todorov, Dynamical Derivation of Vacuum Operator Product Expansion in Euclidean Conformal Quantum Field Theory, Phys. Rev. D 13 (1976) 887 [INSPIRE].

    ADS  Google Scholar 

  20. F. Dolan and H. Osborn, Conformal Partial Waves: Further Mathematical Results, arXiv:1108.6194 [INSPIRE].

  21. D. Simmons-Duffin, Projectors, Shadows and Conformal Blocks, arXiv:1204.3894 [INSPIRE].

  22. A. Kotikov and L. Lipatov, DGLAP and BFKL equations in the N = 4 supersymmetric gauge theory, Nucl. Phys. B 661 (2003) 19 [Erratum ibid. B 685 (2004) 405-407] [hep-ph/0208220] [INSPIRE].

  23. A. Kotikov, L. Lipatov, A. Onishchenko and V. Velizhanin, Three loop universal anomalous dimension of the Wilson operators in N = 4 SUSY Yang-Mills model, Phys. Lett. B 595 (2004) 521 [Erratum ibid. B 632 (2006) 754-756] [hep-th/0404092] [INSPIRE].

  24. Z. Bajnok, R.A. Janik and T. Lukowski, Four loop twist two, BFKL, wrapping and strings, Nucl. Phys. B 816 (2009) 376 [arXiv:0811.4448] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. T. Lukowski, A. Rej and V. Velizhanin, Five-Loop Anomalous Dimension of Twist-Two Operators, Nucl. Phys. B 831 (2010) 105 [arXiv:0912.1624] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. V.S. Fadin, E. Kuraev and L. Lipatov, On the Pomeranchuk Singularity in Asymptotically Free Theories, Phys. Lett. B 60 (1975) 50 [INSPIRE].

    ADS  Google Scholar 

  27. E. Kuraev, L. Lipatov and V.S. Fadin, The Pomeranchuk Singularity in Nonabelian Gauge Theories, Sov. Phys. JETP 45 (1977) 199 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  28. I. Balitsky and L. Lipatov, The Pomeranchuk Singularity in Quantum Chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [INSPIRE].

    Google Scholar 

  29. Z. Bajnok, R.A. Janik and T. Lukowski, Four loop twist two, BFKL, wrapping and strings, Nucl. Phys. B 816 (2009) 376 [arXiv:0811.4448] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. I. Balitsky and G.A. Chirilli, High-energy amplitudes in N = 4 SYM in the next-to-leading order, Phys. Lett. B 687 (2010) 204 [arXiv:0911.5192] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  31. N. Gromov, D. Serban, I. Shenderovich and D. Volin, Quantum folded string and integrability: From finite size effects to Konishi dimension, JHEP 08 (2011) 046 [arXiv:1102.1040] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. N. Gromov and S. Valatka, Deeper Look into Short Strings, JHEP 03 (2012) 058 [arXiv:1109.6305] [INSPIRE].

    Article  ADS  Google Scholar 

  33. L. Cornalba and M.S. Costa, Saturation in Deep Inelastic Scattering from AdS/CFT, Phys. Rev. D 78 (2008) 096010 [arXiv:0804.1562] [INSPIRE].

    ADS  Google Scholar 

  34. E. Levin and I. Potashnikova, Inelastic processes in DIS and N = 4 SYM, JHEP 08 (2010) 112 [arXiv:1007.0306] [INSPIRE].

    Article  ADS  Google Scholar 

  35. R.C. Brower, M. Djuric, I. Sarcevic and C.-I. Tan, String-Gauge Dual Description of Deep Inelastic Scattering at Small-x, JHEP 11 (2010) 051 [arXiv:1007.2259] [INSPIRE].

    Article  ADS  Google Scholar 

  36. M.S. Costa and M. Djuric, Deeply Virtual Compton Scattering from Gauge/Gravity Duality, Phys. Rev. D 86 (2012) 016009 [arXiv:1201.1307] [INSPIRE].

    ADS  Google Scholar 

  37. H. Kowalski, L. Lipatov, D. Ross and G. Watt, Using HERA Data to Determine the Infrared Behaviour of the BFKL Amplitude, Eur. Phys. J. C 70 (2010) 983 [arXiv:1005.0355] [INSPIRE].

    Article  ADS  Google Scholar 

  38. H. Osborn and A. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys. 231 (1994) 311 [hep-th/9307010] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. F. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys. B 599 (2001) 459 [hep-th/0011040] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. H. Liu and A.A. Tseytlin, D = 4 super Yang-Mills, D = 5 gauged supergravity and D = 4 conformal supergravity, Nucl. Phys. B 533 (1998) 88 [hep-th/9804083] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. P. Kovtun and A. Ritz, Black holes and universality classes of critical points, Phys. Rev. Lett. 100 (2008) 171606 [arXiv:0801.2785] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. T. Klose and T. McLoughlin, A light-cone approach to three-point functions in AdS 5 × S 5, JHEP 04 (2012) 080 [arXiv:1106.0495] [INSPIRE].

    Article  ADS  Google Scholar 

  43. E. Buchbinder and A. Tseytlin, Semiclassical correlators of three states with large S 5 charges in string theory in AdS 5 × S 5, Phys. Rev. D 85 (2012) 026001 [arXiv:1110.5621] [INSPIRE].

    ADS  Google Scholar 

  44. J.A. Minahan, Holographic three-point functions for short operators, JHEP 07 (2012) 187 [arXiv:1206.3129] [INSPIRE].

    Article  ADS  Google Scholar 

  45. B. Eden, Three-loop universal structure constants in N = 4 SUSY Yang-Mills theory, arXiv:1207.3112 [INSPIRE].

  46. J. Plefka and K. Wiegandt, Three-Point Functions of Twist-Two Operators in N = 4 SYM at One Loop, JHEP 10 (2012) 177 [arXiv:1207.4784] [INSPIRE].

    Article  ADS  Google Scholar 

  47. B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev, Hidden symmetry of four-point correlation functions and amplitudes in N = 4 SYM, Nucl. Phys. B 862 (2012) 193 [arXiv:1108.3557] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev, Constructing the correlation function of four stress-tensor multiplets and the four-particle amplitude in N = 4 SYM, Nucl. Phys. B 862 (2012) 450 [arXiv:1201.5329] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. L. Lipatov, The Bare Pomeron in Quantum Chromodynamics, Sov. Phys. JETP 63 (1986) 904 [INSPIRE].

    Google Scholar 

  50. H. Kowalski, L. Lipatov and D. Ross, BFKL Evolution as a Communicator Between Small and Large Energy Scales, arXiv:1205.6713 [INSPIRE].

  51. G. Korchemsky, Bethe ansatz for QCD Pomeron, Nucl. Phys. B 443 (1995) 255 [hep-ph/9501232] [INSPIRE].

    Article  ADS  Google Scholar 

  52. F. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys. B 678 (2004) 491 [hep-th/0309180] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. H. Liu, Scattering in anti-de Sitter space and operator product expansion, Phys. Rev. D 60 (1999) 106005 [hep-th/9811152] [INSPIRE].

    ADS  Google Scholar 

  54. E. D’Hoker, D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Graviton exchange and complete four point functions in the AdS/CFT correspondence, Nucl. Phys. B 562 (1999) 353 [hep-th/9903196] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  55. E. D’Hoker, S.D. Mathur, A. Matusis and L. Rastelli, The Operator product expansion of N = 4 SYM and the 4 point functions of supergravity, Nucl. Phys. B 589 (2000) 38 [hep-th/9911222] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  56. M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning Conformal Correlators, JHEP 11 (2011) 071 [arXiv:1107.3554] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. J. Vermaseren, Harmonic sums, Mellin transforms and integrals, Int. J. Mod. Phys. A 14 (1999) 2037 [hep-ph/9806280] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  58. J. Blumlein and S. Kurth, Harmonic sums and Mellin transforms up to two loop order, Phys. Rev. D 60 (1999) 014018 [hep-ph/9810241] [INSPIRE].

    ADS  Google Scholar 

  59. A. Kotikov and V. Velizhanin, Analytic continuation of the Mellin moments of deep inelastic structure functions, hep-ph/0501274 [INSPIRE].

  60. J. Blumlein, Analytic continuation of Mellin transforms up to two loop order, Comput. Phys. Commun. 133 (2000) 76 [hep-ph/0003100] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  61. N. Beisert, The Dilatation operator of N = 4 super Yang-Mills theory and integrability, Phys. Rept. 405 (2005) 1 [hep-th/0407277] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  62. J. Henn, C. Jarczak and E. Sokatchev, On twist-two operators in N = 4 SYM, Nucl. Phys. B 730 (2005)191 [hep-th/0507241] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasco Goncalves.

Additional information

ArXiv ePrint: 1209.4355

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, M.S., Goncalves, V. & Penedones, J. Conformal Regge theory. J. High Energ. Phys. 2012, 91 (2012). https://doi.org/10.1007/JHEP12(2012)091

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2012)091

Keywords

Navigation